

TBIP-L...-FDIO1-2IOL Safety-Block-I/O-Modul

Anwenderhandbuch

Inhaltsverzeichnis

16	SIP-LFD	101-210L – Sichere I/O-Kanale	10
1	Über dies	se Anleitung	10
	1.1	Zielgruppen	10
	1.2	Symbolerläuterung	10
	1.3	Weitere Unterlagen	11
	1.4	Feedback zu dieser Anleitung	11
2	Hinweise	zum Produkt	12
	2.1	Produktidentifizierung	
	2.2	Lieferumfang	
	2.3	Turck-Service	
3	7u Ihrer 9	Sicherheit	13
•	3.1	Bestimmungsgemäße Verwendung	
	3.1.1	Vernünftigerweise vorhersehbare Fehlanwendung	
	3.2	Allgemeine Sicherheitshinweise	14
	3.3	Restrisiken (gemäß EN ISO 12100:2010)	14
	3.4	Gewährleistung und Haftung	14
	3.5	Richtlinien und Normen	15
	3.5.1	Nationale und internationale Richtlinien und Vorschriften	
	3.5.2	Zitierte Normen	
	3.6	Hinweise zum Ex-Schutz	
	3.7	Auflagen durch ATEX- und IECEx-Zulassung bei Ex-Einsatz	16
4	Produktb	peschreibung	17
	4.1	Geräteübersicht	
	4.1.1	Typenschild	
	4.2 4.2.1	Eigenschaften und Merkmale Schalter und Anschlüsse	
	4.2.1	Funktionen und Betriebsarten	
	4.3 4.3.1	Sicherheitsfunktion	
	4.3.2	Sichere Eingänge (FDI)	
	4.3.3	Sichere Ausgänge (FDO)	
	4.3.4	Universelle Standard-I/Os	
	4.3.5 4.3.6	IO-Link-Master-Kanäle Konfigurationsspeicher	
_			
5		nGerät in Zone 2 und Zone 22 montieren	
	5.1		
	5.2	Auf Montageplatte befestigen	
	5.3 5.3.1	Gerät erden Ersatzschaltbild und Schirmungskonzept	
	5.3.2	Schirmung der Feldbus- und I/O-Ebene	
	5.3.3	Gerät erden – I/O-Ebene und Feldbusebene	
6	Anschlie	3en	27
	6.1	Gerät in Zone 2 und Zone 22 anschließen	27
	6.2	M12-Steckverbinder anschließen	28
	6.3	Gerät an Ethernet anschließen	28

	6.4	Versorgungsspannung anschließen	
	6.4.1	24-V-Versorgung (SELV/PELV)	
	6.5	Sichere Sensoren und Aktuatoren anschließen	
	6.6	Schaltungsbeispiele	
	6.6.1	Eingänge	
	6.6.2	Ausgänge	36
7	In Betrieb	nehmen	. 37
	7.1	Erstinbetriebnahme	
	7.1.1	Montieren und elektrisch installieren	
	7.1.2	Konfigurieren im Turck Safety Configurator	
	7.1.3	Gerät an einer Steuerung in Betrieb nehmen	
	7.2	Sicherheitsplanung	
	7.2.1	Voraussetzungen	
	7.2.2	Reaktionszeit	
	7.2.3	Sicherheitskennwerte	
	7.3	Gerät adressieren	
	7.3.1 7.3.2	IP-Adresse über Drehcodierschalter einstellen	
		IP-Adresse über den Webserver einstellen	
8	Konfiguri	eren	. 41
	8.1	Turck Safety Configurator installieren	. 41
	8.2	Turck Safety Configurator lizenzieren	. 41
	8.3	Konfiguration mit dem TSC-Startassistenten erstellen	. 43
	8.3.1	Master auswählen und Basiskonfiguration erstellen	
	8.3.2	Konfiguration der sicheren Kanäle anpassen	
	8.4	Konfiguration mit dem TSC-Inbetriebnahme-Assistenten laden	. 52
	8.5	Anwendungsbeispiel – Sicherheitsfunktion im TSC konfigurieren	
	8.5.1	Konfiguration prüfen und laden	
	8.6	Einkanalige sichere Sensoren konfigurieren	
	8.7	Gerät an EtherNet/IP in Rockwell Studio 5000 konfigurieren	
	8.7.1	Verwendete Hardware	
	8.7.2	Verwendete Software	
	8.7.3	Neues Projekt in Studio 5000 erstellen	
	8.7.4 8.7.5	Katalogdatei öffnen Gerät in Logix Designer konfigurieren	
	017 10		
9		1	
	9.1	LED-Anzeigen	
	9.2	Status- und Control-Wort	. 84
	9.3	Prozess-Eingangsdaten	
	9.3.1	Übersicht – Gesamtmodul	
	9.3.2	Prozess-Eingangsdaten – sichere I/O-Kanäle	
	9.4	Prozess-Ausgangsdaten	
	9.4.1	Übersicht – Gesamtmodul	
	9.4.2	Prozess-Ausgangsdaten – sichere I/O-Kanäle	
	9.5	Konfigurationsspeicher verwenden	
	9.5.1	Konfiguration speichern	
			u)
	9.5.2	Konfiguration vom Speicherchip laden	
	9.5.2 9.5.3 9.5.4	Speicherchip löschen (Erase Memory)	. 92

10	Wieder ii	n Betrieb nehmen nach Austausch oder Umbau	
	10.1	Gerät austauschen	
	10.1.1	Voraussetzungen für den Gerätetausch	
	10.1.2	Vorgehen bei Gerätetausch	95
11	Instand h	nalten	96
12	Außer Be	etrieb nehmen	96
13	Entsorge	n	96
	•	he Daten	
17	14.1	Allgemeine technische Daten	
	14.2	Technische Daten – sichere Eingänge	
	14.3	Technische Daten – sichere Ausgänge	
	14.5	recimische Daten – sichere Ausgange	93
ТВ	IP-LFD	IO1-2IOL – Standard-DXP-Kanäle	101
15	Beschrei	bung der DXP-Kanäle	101
	15.1	Funktionen und Betriebsarten	
	15.1.1	Standard-DXP-Kanäle versorgen	
16	Anschlie	Ben	
	16.1	Gerät in Zone 2 und Zone 22 anschließen	
	16.2	Digitale Sensoren und Aktuatoren anschließen	
17		ieren	
17	17.1	Parameter	
18		n	
	18.1	LED-Anzeigen – DXP-Kanäle	
	18.2	Prozess-Eingangsdaten	
	18.2.1 18.2.2	Übersicht – Gesamtmodul Prozess-Eingangsdaten – Standard-DXP-Kanäle	
	18.3	Prozess-Ausgangsdaten	
	18.3.1	Übersicht – Gesamtmodul	
	18.3.2	Prozess-Ausgangsdaten – Standard-DXP-Kanäle	
19	Technisc	he Daten – DXP-Kanäle	107
.,	reciiiise	TO DUCTI DA RUIGE	
ТВ	IP-LFD	IO1-2IOL – Standard-IO-Link-Kanäle	109
20	Beschrei	bung der IO-Link-Kanäle	109
	20.1	Funktionen und Betriebsarten	110
	20.1.1	Versorgung der IO-Link-Ports	
	20.1.2	Versorgung angeschlossener IO-Link-Geräte (Class A und Class B)	110
21	Anschlie	ßen	111
	21.1	Gerät in Zone 2 und Zone 22 anschließen	111
	21.2	IO-Link-Geräte anschließen	112
22	In Betriel	o nehmen	114
	22.1	IO-Link-Device mit IO-Link V1.0 in Betrieb nehmen	114
	22.2	IO-Link-Device mit IO-Link V1.1 in Betrieb nehmen	
23	Konfigur	ieren	
	23.1	Parameter	
	23.1.1	Prozessdatenmapping anpassen	

24	Betreiben		
	24.1	LED-Anzeigen – IO-Link-Kanäle	122
	24.2 24.2.1 24.2.2	Prozess-EingangsdatenÜbersicht – GesamtmodulProzess-Eingangsdaten – IO-Link-Kanäle	123
	24.3 24.3.1 24.3.2	Prozess-AusgangsdatenÜbersicht – GesamtmodulProzess-Ausgangsdaten – IO-Link-Kanäle	126
	24.4	Software-Diagnosemeldungen	127
	24.5 24.5.1	IO-Link-Funktionen für die azyklische Kommunikation Port-Funktionen für Port 0 (IO-Link-Master)	
	24.6 24.6.1 24.6.2 24.6.3 24.6.4	Datenhaltungsmodus nutzen Parameter Datenhaltungsmodus = aktiviert Parameter Datenhaltungsmodus = einlesen Parameter Datenhaltungsmodus = überschreiben Parameter Datenhaltungsmodus = deaktiviert, löschen	136 137 137
25	Störunger	n beseitigen	139
	25.1	Parametrierfehler beheben	139
26	Technisch	e Daten – IO-Link-Kanäle	140
27	Anhang: Z	ulassungen und Kennzeichnungen	141
28	Turck-Niederlassungen – Kontaktdaten142		

TBIP-L...-FDIO1-2IOL – Sichere I/O-Kanäle

1	Übe	er diese Anleitung	10
	1.1	Zielgruppen	10
	1.2	Symbolerläuterung	10
	1.3	Weitere Unterlagen	11
	1.4	Feedback zu dieser Anleitung	11
2	Hin	weise zum Produkt	12
	2.1	Produktidentifizierung	12
	2.2	Lieferumfang	12
	2.3	Turck-Service	12
3	Zu	lhrer Sicherheit	13
	3.1	Bestimmungsgemäße Verwendung	13
	3.1.1	Vernünftigerweise vorhersehbare Fehlanwendung	13
	3.2	Allgemeine Sicherheitshinweise	14
	3.3	Restrisiken (gemäß EN ISO 12100:2010)	14
	3.4	Gewährleistung und Haftung	14
	3.5	Richtlinien und Normen	15
	3.5.1	Nationale und internationale Richtlinien und Vorschriften	15
	3.5.2	Zitierte Normen	15
	3.6	Hinweise zum Ex-Schutz	15
	3.7	Auflagen durch ATEX- und IECEx-Zulassung bei Ex-Einsatz	16
4	Pro	duktbeschreibung	17
	4.1	Geräteübersicht	17
	4.1.1	Typenschild	18
	4.2	Eigenschaften und Merkmale	18
	4.2.1	Schalter und Anschlüsse	19
	4.3	Funktionen und Betriebsarten	20
	4.3.1	Sicherheitsfunktion	20
	4.3.2	Sichere Eingänge (FDI)	20
	4.3.3	Sichere Ausgänge (FDO)	21
	4.3.4	Universelle Standard-I/Os	21
	4.3.5	IO-Link-Master-Kanäle	21
	4.3.6	Konfigurationsspeicher	21
5	Мо	ntieren	22
	5.1	Gerät in Zone 2 und Zone 22 montieren	22
	5.2	Auf Montageplatte befestigen	23
	5.3	Gerät erden	23
	5.3.1	Ersatzschaltbild und Schirmungskonzept	23
	5.3.2	Schirmung der Feldbus- und I/O-Ebene	25
	5.3.3	Gerät erden – I/O-Ebene und Feldbusebene	25
6	Ans	schließen	27
	6.1	Gerät in Zone 2 und Zone 22 anschließen	27
	6.2	M12-Steckverbinder anschließen	28
	6.3	Gerät an Ethernet anschließen	28

TBIP-L...-FDIO1-2IOL – Sichere I/O-Kanäle

	6.4	Versorgungsspannung anschließen	30
	6.4.1	24-V-Versorgung (SELV/PELV)	. 32
	6.5	Sichere Sensoren und Aktuatoren anschließen	. 33
	6.6	Schaltungsbeispiele	. 35
	6.6.1	Eingänge	. 35
	6.6.2	Ausgänge	. 36
7	In B	Betrieb nehmen	. 37
	7.1	Erstinbetriebnahme	. 37
	7.1.1	Montieren und elektrisch installieren	. 37
	7.1.2	Konfigurieren im Turck Safety Configurator	. 37
	7.1.3	Gerät an einer Steuerung in Betrieb nehmen	. 37
	7.2	Sicherheitsplanung	. 37
	7.2.1	Voraussetzungen	. 37
	7.2.2	Reaktionszeit	. 38
	7.2.3	Sicherheitskennwerte	. 38
	7.3	Gerät adressieren	. 39
	7.3.1	IP-Adresse über Drehcodierschalter einstellen	. 39
	7.3.2	IP-Adresse über den Webserver einstellen	. 40
8	Kor	nfigurieren	41
	8.1	Turck Safety Configurator installieren	41
	8.2	Turck Safety Configurator lizenzieren	41
	8.3	Konfiguration mit dem TSC-Startassistenten erstellen	43
	8.3.1	Master auswählen und Basiskonfiguration erstellen	. 43
	8.3.2	Konfiguration der sicheren Kanäle anpassen	. 47
	8.4	Konfiguration mit dem TSC-Inbetriebnahme-Assistenten laden	. 52
	8.5	Anwendungsbeispiel – Sicherheitsfunktion im TSC konfigurieren	. 57
	8.5.1	Konfiguration prüfen und laden	62
	8.6	Einkanalige sichere Sensoren konfigurieren	62
	8.7	Gerät an EtherNet/IP in Rockwell Studio 5000 konfigurieren	65
	8.7.1	Verwendete Hardware	65
	8.7.2	Verwendete Software	65
	8.7.3	Neues Projekt in Studio 5000 erstellen	66
	8.7.4	Katalogdatei öffnen	68
	8.7.5	Gerät in Logix Designer konfigurieren	. 70
9	Bet	reiben	82
	9.1	LED-Anzeigen	82
	9.2	Status- und Control-Wort	84
	9.3	Prozess-Eingangsdaten	85
	9.3.1	Übersicht – Gesamtmodul	. 85
	9.3.2	Prozess-Eingangsdaten – sichere I/O-Kanäle	. 86
	9.4	Prozess-Ausgangsdaten	90
	9.4.1	Übersicht – Gesamtmodul	90
	9.4.2	Prozess-Ausgangsdaten – sichere I/O-Kanäle	. 90

TBIP-L...-FDIO1-2IOL – Sichere I/O-Kanäle

9.5	Konfigurationsspeicher verwenden	92
9.5.1	Konfiguration speichern	92
9.5.2	Konfiguration vom Speicherchip laden	92
9.5.3	Speicherchip löschen (Erase Memory)	92
9.5.4	Konfigurationsübernahme und Modulverhalten	93
Wie	der in Betrieb nehmen nach Austausch oder Umbau	95
10.1		
10.1.1	Voraussetzungen für den Gerätetausch	95
10.1.2	Vorgehen bei Gerätetausch	95
Inst	and halten	96
Auſ	Ber Betrieb nehmen	96
Ent	sorgen	96
Tec	hnische Daten	97
14.1	Allgemeine technische Daten	97
14.2	Technische Daten – sichere Eingänge	98
14.3	Technische Daten – sichere Ausgänge	
	9.5.1 9.5.2 9.5.3 9.5.4 Wie 10.1 10.1.1 10.1.2 Inst Auf Ent Tec 14.1 14.2	9.5.1 Konfiguration speichern

1 Über diese Anleitung

Die Anleitung beschreibt den Aufbau, die Funktionen und den Einsatz des Produkts und hilft Ihnen, das Produkt bestimmungsgemäß zu betreiben. Die Anleitung und enthält Vorschriften zur Anwendung der Geräte in sicherheitstechnischen Systemen (Safety Instrumented Systems SIS). Die Betrachtung der sicherheitsrelevanten Werte basiert auf der IEC 61508, der ISO 13849-1 und der IEC 62061.

Lesen Sie die Anleitung vor dem Gebrauch des Produkts aufmerksam durch. So vermeiden Sie mögliche Personen-, Sach- und Geräteschäden. Bewahren Sie die Anleitung auf, solange das Produkt genutzt wird. Falls Sie das Produkt weitergeben, geben Sie auch diese Anleitung mit.

1.1 Zielgruppen

Die vorliegende Anleitung richtet sich an Fachpersonal oder fachlich geschultes Personal (Planer, Entwickler, Konstrukteur, Monteur, Elektrofachkraft, Bediener, Instandhalter, etc.) und muss von jeder Person sorgfältig gelesen werden, die das Gerät montiert, in Betrieb nimmt, betreibt, instand hält, demontiert oder entsorgt.

Bei Einsatz des Gerätes in Ex-Kreisen muss der Anwender zusätzlich über Kenntnisse im Explosionsschutz (EN 60079-14 etc.) verfügen.

1.2 Symbolerläuterung

In dieser Anleitung werden folgende Symbole verwendet:

GEEVHD

GEFAHR kennzeichnet eine gefährliche Situation mit hohem Risiko, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht vermieden wird.

WARNUNG

WARNUNG kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht vermieden wird.

VORSICHT

VORSICHT kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zu mittelschweren oder leichten Verletzungen führen kann, wenn sie nicht vermieden wird.

ACHTUNG

ACHTUNG kennzeichnet eine Situation, die zu Sachschäden führen kann, wenn sie nicht vermieden wird.

HINWEIS

Unter HINWEIS finden Sie Tipps, Empfehlungen und nützliche Informationen zu speziellen Handlungsschritten und Sachverhalten. Die Hinweise erleichtern Ihnen die Arbeit und helfen Ihnen, Mehrarbeit zu vermeiden.

HANDLUNGSAUFFORDERUNG

Dieses Zeichen kennzeichnet Handlungsschritte, die der Anwender ausführen muss.

 \Rightarrow

HANDLUNGSRESULTAT

Dieses Zeichen kennzeichnet relevante Handlungsresultate.

1.3 Weitere Unterlagen

Ergänzend zu diesem Dokument finden Sie im Internet unter www.turck.com folgende Unterlagen:

- Datenblatt
- EU-Konformitätserklärung (aktuelle Version)
- Sicherheitshandbuch
- Zulassungen

1.4 Feedback zu dieser Anleitung

Wir sind bestrebt, diese Anleitung ständig so informativ und übersichtlich wie möglich zu gestalten. Haben Sie Anregungen für eine bessere Gestaltung oder fehlen Ihnen Angaben in der Anleitung, schicken Sie Ihre Vorschläge an techdoc@turck.com.

2 Hinweise zum Produkt

2.1 Produktidentifizierung

Diese Anleitung gilt für die folgenden Safety-Hybrid-Module mit CIP Safety:

- TBIP-L4-FDIO1-2IOL
- TBIP-L5-FDIO1-2IOL
- TBIP-LL-FDIO1-2IOL

2.2 Lieferumfang

Im Lieferumfang sind enthalten:

- TBIP-L...-FDIO1-2IOL
- M12-Verschlusskappen
- 7/8"-Blindkappen (nicht geeignet um IP67/IP69K zu garantieren)

2.3 Turck-Service

Turck unterstützt Sie bei Ihren Projekten von der ersten Analyse bis zur Inbetriebnahme Ihrer Applikation. In der Turck-Produktdatenbank unter www.turck.com finden Sie Software-Tools für Programmierung, Konfiguration oder Inbetriebnahme, Datenblätter und CAD-Dateien in vielen Exportformaten.

Die Kontaktdaten der Turck-Niederlassungen weltweit finden Sie auf S. [142].

3 Zu Ihrer Sicherheit

Das Produkt ist nach dem Stand der Technik konzipiert. Dennoch gibt es Restgefahren. Um Personen- und Sachschäden zu vermeiden, müssen Sie die Sicherheits- und Warnhinweise beachten. Für Schäden durch Nichtbeachtung von Sicherheits- und Warnhinweisen übernimmt Turck keine Haftung.

3.1 Bestimmungsgemäße Verwendung

Das Gerät ist ausschließlich zum Einsatz im industriellen Bereich bestimmt.

Das TBIP-L...-FDIO1-2IOL ist ein dezentrales Sicherheitsmodul für CIP Safety. Das Gerät sammelt Feldsignale und leitet sie sicher weiter zu einem CIP Safety-Master. Durch den Temperaturbereich von -40...+70 °C und die Schutzarten IP67/IP69K ist das Modul direkt an der Maschine einsetzbar.

Das Modul dient der Überwachung von Signalgebern wie z. B. Not-Halt-Tastern, Positionsschaltern, berührungslos wirkenden Schutzeinrichtungen BWS, die als Teil von Schutzeinrichtungen an Maschinen zum Zweck des Personen-, Material- und Maschinenschutzes eingesetzt werden.

Für nicht sicherheitsrelevante Funktionen verfügt das Safety-Hybrid-Modul über zusätzliche universelle DXP-Kanäle sowie über zwei IO-Link Master-Kanäle für den Anschluss von IO-Link-Sensoren und IO-Link-Hubs für die Erweiterung auf bis zu 32 I/O-Signale.

TBIP-L...-FDIO1-2IOL kann in folgenden Applikationen eingesetzt werden:

- Anwendungen bis SIL3 (gemäß IEC 61508)
- Anwendungen bis SIL CL3 (gemäß EN 62061)
- Anwendungen bis Kategorie 4 und Performance Level e (gemäß EN ISO 13849-1)

Das Gerät darf nur wie in dieser Anleitung beschrieben verwendet werden. Jede andere Verwendung gilt als nicht bestimmungsgemäß. Für daraus resultierende Schäden übernimmt Turck keine Haftung.

3.1.1 Vernünftigerweise vorhersehbare Fehlanwendung

Das Gerät ist nicht geeignet für:

- den Betrieb im Freien
- den permanenten Betrieb in Flüssigkeiten

Veränderungen am Gerät

Das Gerät darf weder baulich noch technisch verändert werden.

3.2 Allgemeine Sicherheitshinweise

- Nur fachlich geschultes Personal darf das Gerät montieren, installieren, betreiben, parametrieren und instand halten.
- Das Gerät nur in Übereinstimmung mit den geltenden nationalen und internationalen Bestimmungen, Normen und Gesetzen einsetzen.
- Das Gerät erfüllt ausschließlich die EMV-Anforderungen für den industriellen Bereich und ist nicht zum Einsatz in Wohngebieten geeignet.
- Der Performance-Level sowie die Sicherheits-Kategorie nach EN ISO 13849-1 h\u00e4ngen von der Au\u00dfenbeschaltung, dem Einsatzfall, der Wahl der Befehlsgeber und deren \u00f6rtlicher Anordnung an der Maschine ab.
- Der Anwender muss eine Risikobeurteilung nach EN ISO 12100:2010 durchführen.
- Auf Basis der Risikobeurteilung muss eine Validierung der Gesamtanlage/-maschine nach den einschlägigen Normen erfolgen.
- Das Betreiben des Gerätes außerhalb der Spezifikation kann zu Funktionsstörungen oder zur Zerstörung des Gerätes führen. Die Installationshinweise müssen unbedingt beachtet werden.
- Für einen einwandfreien Betrieb muss das Gerät sachgemäß transportiert, gelagert, installiert und montiert werden.
- Zur Freigabe eines Sicherheitsstromkreises gemäß EN/IEC 60204-1, EN ISO/ISO 13850 ausschließlich die Ausgangskreise der Steckplätze C2, C3, C4, C5 sowie C7 bzw. X2, X3, X4, X5 sowie X7 verwenden.
- Für den Anschluss von Sensoren bzw. Aktoren in sicherheitsgerichteten Anwendungen ausschließlich die Steckplätze C0...C3 bzw. X0...X3 verwenden.
- Default-Passwort des integrierten Webservers nach dem ersten Login ändern. Turck empfiehlt, ein sicheres Passwort zu verwenden.

3.3 Restrisiken (gemäß EN ISO 12100:2010)

Die in dieser Anleitung beschriebenen Schaltungsvorschläge wurden mit größter Sorgfalt unter Betriebsbedingungen geprüft und getestet. Sie erfüllen mit der angeschlossenen Peripherie sicherheitsgerichteter Einrichtungen und Schaltgeräte insgesamt die einschlägigen Normen.

Restrisiken verbleiben, wenn:

- vom vorgeschlagenen Schaltungskonzept abgewichen wird und dadurch die angeschlossenen sicherheitsrelevanten Geräte oder Schutzeinrichtungen nicht oder nur unzureichend in die Sicherheitsschaltung einbezogen werden.
- der Betreiber die einschlägigen Sicherheitsvorschriften für Betrieb, Einstellung und Wartung der Maschine missachtet. Hierbei muss auf die strenge Einhaltung der Intervalle zur Prüfung und Wartung der Maschine geachtet werden.

Die Nichtbeachtung dieser Anweisung kann Körperverletzung oder Materialschäden zur Folge haben.

3.4 Gewährleistung und Haftung

Jegliche Gewährleistung und Haftung sind ausgeschlossen bei:

- Fehlanwendung bzw. nicht bestimmungsgemäßer Anwendung des Produktes
- Nichtbeachtung des Anwenderhandbuchs
- Montage, Installation, Konfiguration bzw. Inbetriebnahme durch nicht befähigte Personen

3.5 Richtlinien und Normen

Hersteller und Betreiber von Maschinen und Anlagen, in denen das Gerät zum Einsatz kommt, sind verantwortlich dafür, alle zutreffenden Richtlinien und Gesetze einzuhalten.

3.5.1 Nationale und internationale Richtlinien und Vorschriften

Die folgenden Richtlinien und Vorschriften müssen beachtet werden:

- 2006/42/EG (Maschinenrichtlinie)
- 2014/30/EU (Elektromagnetische Verträglichkeit)
- 2014/34/EU (ATEX-Richtlinie)
- 2011/65/EU (RoHS-Richtlinie)
- 89/655/EWG (Arbeitsmittelbenutzungsrichtlinie)
- Unfallverhütungsvorschriften
- Sicherheitsvorschriften und -regeln nach aktuellem Stand der Technik

3.5.2 Zitierte Normen

Norm	Titel
DIN EN ISO 13849-1:2016-06	Sicherheit von Maschinen - Sicherheitsbe- zogene Teile von Steuerungen
EN 62061:2005 + Cor.:2010 + A1:2013 + A2:2015 IEC 62061:2005 + A1:2012 + A2:2015	Sicherheit von Maschinen – Funktionale Sicherheit sicherheitsbezogener elektri- scher, elektrischer und programmierbarer elektronischer Steuerungssysteme
DIN EN 61508:2011 IEC 61508:2010	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme
DIN EN 61131-2:2008 IEC 61131-2:2007	Speicherprogrammierbare Steuerungen
EN ISO 12100:2010 DIN EN ISO 12100:211-03	Sicherheit von Maschinen - Allgemeine Gestaltungsleitsätze - Risikobeurteilung und Risikominderung

3.6 Hinweise zum Ex-Schutz

- Bei Einsatz des Gerätes in Ex-Kreisen muss der Anwender über Kenntnisse im Explosionsschutz (EN 60079-14 etc.) verfügen.
- Nationale und internationale Vorschriften für den Explosionsschutz beachten.
- Das Gerät nur innerhalb der zulässigen Betriebs- und Umgebungsbedingungen (siehe Zulassungsdaten und Auflagen durch die Ex-Zulassung) einsetzen.

3.7 Auflagen durch ATEX- und IECEx-Zulassung bei Ex-Einsatz

- Gerät nur in einem Bereich mit einem Verschmutzungsgrad von max. 2 einsetzen.
- Stromkreise nur trennen und verbinden, wenn keine Spannung anliegt.
- Schalter nur betätigen, wenn keine Spannung anliegt.
- Metallische Schutzabdeckung an Potenzialausgleich im Ex-Bereich anschließen.
- Schlagfestigkeit nach EN IEC 60079-0 gewährleisten alternative Maßnahmen:
 - Gerät in Schutzgehäuse TB-SG-L montieren (im Set mit Ultem-Fenster erhältlich: ID 100014865) und Service-Fenster durch Ultem-Fenster ersetzen.
 - Gerät in einem Schlagschutz bietenden Bereich montieren (z. B. in Roboterarm) und Warnhinweis anbringen: "GEFAHR: Stromkreise nicht unter Spannung verbinden oder trennen. Schalter nicht unter Spannung betätigen."
- Gerät nicht in Bereichen mit kritischem Einfluss von UV-Licht installieren.
- Gefahren durch elektrostatische Aufladung vermeiden.
- Nicht verwendete Steckverbinder mit Blindsteckern schützen, um Schutzart IP67 zu gewährleisten.

4 Produktbeschreibung

TBIP-L...-FDIO1-2IOL ist ein hybrides Safety-Block-I/O-Modul für CIP Safety über EtherNet/IP. Das Gerät verfügt über zwei sichere 2-kanalige digitale Eingänge (FDI) zum Anschluss unterschiedlicher Sicherheitssensorik wie Lichtgitter oder Not-Halt-Taster. Zwei weitere sichere Kanäle (FDX) lassen sich wahlweise als Eingang (FDI) oder Ausgang (FDO) nutzen.

Die Konfiguration der sicheren I/Os und ihrer Funktion erfolgt mit Hilfe des Softwaretools Turck Safety Configurator.

An die vier universellen digitalen Ein-/Ausgänge des Geräts lassen sich nicht sicherheitsgerichtete Signale anschließen. Zusätzlich verfügt das Gerät über zwei IO-Link-Master. In Kombination mit Turck-I/O-Hubs lassen sich auf diesem Weg bis zu 32 I/Os zusätzlich an das Modul anbinden. Sowohl die Standard- als auch die IO-Link-Kanäle des TBIP-L...-FDIO1-2IOL können intern sicherheitsgerichtet abgeschaltet werden.

4.1 Geräteübersicht

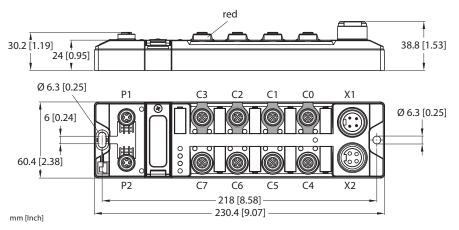


Abb. 1: TBIP-L4-FDIO1-2IOL

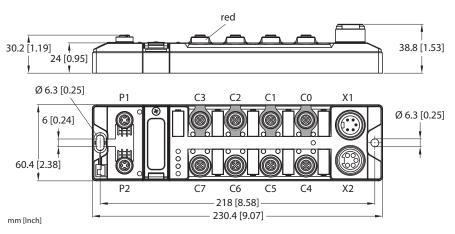


Abb. 2: TBIP-L5-FDIO1-2IOL

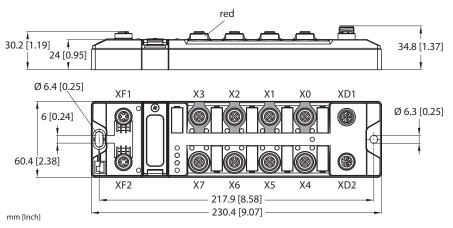


Abb. 3: TBIP-LL-FDIO1-2IOL

4.1.1 Typenschild

TBIP-L4-FDIO1-2IOL

 Ident-No.:
 100000360
 Hans Turck GmbH & Co. KG

 HW:
 D-45466 Mülheim a. d. Ruhr

 Charge code:
 www.turck.com

 YoC:
 Made in Germany

Abb. 4: Typenschild TBIP-L4-FDIO1-2IOL

TBIP-L5-FDIO1-2IOL

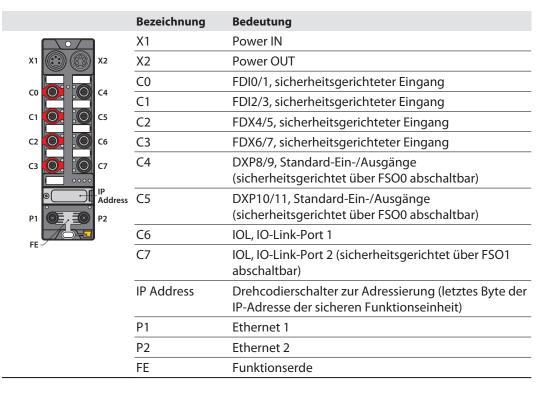
Ident-No.: 6814056 Hans Turck GmbH & Co. KG
HW: D-45466 Mülheim a. d. Ruhi
Charge code: www.turck.com
YoC: Made in Germany

Abb. 5: Typenschild TBIP-L5-FDIO1-2IOL

TBIP-LL-FDIO1-2IOL

Ident-No.: 100027260 Hans Turck GmbH & Co. KG HW: D-45466 Mülheim a. d. Ruhr Charge code: www.turck.com YoC: Made in Germany

Abb. 6: Typenschild TBIP-LL-FDIO1-2IOL


4.2 Eigenschaften und Merkmale

- Zwei sicherheitsgerichtete SIL3-Eingänge FDI
- Zwei sicherheitsgerichtete universelle SIL3-Ein-/Ausgänge FDX
- Vier nicht sicherheitsgerichtete Ein-/Ausgänge DXP
- Zwei IO-Link-Master-Ports (IOL)
- Sicherheitsgerichtetes Abschalten der Standard-Kanäle und eines IO-Link-Kanals
- Sichere PP/PM-Abschaltung der Aktuator-Spannungsversorgung
- Bis zu 2 A pro Ausgang
- Einsetzbar in SIL CL3 nach EN 62061 oder PLe nach DIN EN ISO 13849-1
- 7/8"-Steckverbinder zur Spannungsversorgung: TBIP-L4-FDIO1-2IOL und TBIP-L4-FDIO1-2IOL
- M12-Steckverbinder, L-codiert zur Spannungsversorgung: TBIP-LL-FDIO1-2IOL
- Zwei 4-polige M12-Anschlüsse für Ethernet
- Mehrere LEDs zur Statusanzeige
- Integrierter Ethernet-Switch ermöglicht Linientopologie
- Integrierter Webserver
- Übertragungsrate 10 MBit/s und 100 MBit/s
- Glasfaserverstärktes Gehäuse
- Schock- und Schwingungsgeprüft
- Vollvergossene Modulelektronik
- Schutzart IP65/IP67/IP69K

4.2.1 Schalter und Anschlüsse

TBIP-L...-FDIO1-2IOL

TBIP-LL-FDIO1-2IOL

	Bezeichnung	Bedeutung
	XD1	Power IN
XD1 XD2	XD2	Power OUT
	X0	FDI0/1, sicherheitsgerichteter Eingang
X0 X4	X1	FDI2/3, sicherheitsgerichteter Eingang
X1 X5	X2	FDX4/5, sicherheitsgerichteter Eingang
X2 X6	Х3	FDX6/7, sicherheitsgerichteter Eingang
X3	X4	DXP8/9, Standard-Ein-/Ausgänge (sicherheitsgerichtet über FSO0 abschaltbar)
P Address XF2	X5	DXP10/11, Standard-Ein-/Ausgänge (sicherheitsgerichtet über FSO0 abschaltbar)
FE	X6	IOL, IO-Link-Port 1
res	X7	IOL, IO-Link-Port 2 (sicherheitsgerichtet über FSO1 abschaltbar)
	IP Address	Drehcodierschalter zur Adressierung (letztes Byte der IP-Adresse der sicheren Funktionseinheit)
	XF1	Ethernet 1
	XF2	Ethernet 2
	FE	Funktionserde

4.3 Funktionen und Betriebsarten

4.3.1 Sicherheitsfunktion

Die TBIP-L...-FDIO1-2IOL verfügen über zwei sichere digitale SIL3-Eingänge (FDI) und zwei als Ein- oder Ausgänge konfigurierbare sichere SIL3-Steckplätze (FDX).

An die sicheren Eingänge können die folgenden Geräte angeschlossen werden:

- 1- und 2-kanalige Sicherheitsschalter und Sensoren
- kontaktbehaftete Schalter, z. B. Not-Aus-Taster, Schutztürschalter
- Sensoren mit OSSD-Schaltausgängen
- antivalent schaltende OSSD-Sensoren

Die zwei sicheren SIL3-Ausgänge sind PP- oder PM-schaltend nutzbar.

Sicherer Zustand

Im sicheren Zustand sind die Ausgänge des Geräts im LOW-Zustand (0). Die Eingänge melden einen LOW-Zustand (0) zur Logik.

Schwerer Ausnahmefehler (Fatal Error)

- Fehlverdrahtung am Ausgang (z. B. kapazitive Last, Rückspeisung)
- Kurzschluss am Taktspeiseausgang T2
- Fehlerhafte Spannungsversorgung
- Starke EMV-Störungen
- Interner Gerätedefekt

4.3.2 Sichere Eingänge (FDI)

Die sicheren Eingänge sind geeignet für den Anschluss sicherheitsgerichteter Sensoren:

- Max. vier 2-kanalige Sicherheitsschalter und Sensoren
- Kontaktbehaftete Schalter, z. B. Not-Aus-Taster, Schutztürschalter
- Sensoren mit OSSD-Schaltausgängen mit Testsignalen
- Sensoren mit OSSD-Schaltausgängen ohne Testsignale

Fehlererkennung und Diagnose

Intern:

■ Modul-Selbsttest: Diagnose von internen Modulfehlern

Extern:

- Querschluss-Diagnose: Erkannt wird ein Querschluss zwischen den Sensorversorgungen der Eingänge bzw. von einer Sensorversorgung zu einem anderen Potenzial (bei aktivierten Testsignalen)
- Diskrepanzfehler-Diagnose: bei 2-kanaligen Eingängen
- Kurzschluss-Diagnose

Parameter

Für jeden Eingang können folgende Typen ausgewählt werden:

- Sicherer Eingang für potenzialfreie Kontakte (Öffner/Öffner)
- Sicherer antivalenter Eingang für potenzialfreie Kontakte (Öffner/Schließer)
- Sicherer elektronischer Eingang an OSSD-Ausgang mit Testpulsen

4.3.3 Sichere Ausgänge (FDO)

Die sicheren SIL3-Ausgänge sind PP- oder PM-schaltend nutzbar.

Max. zwei 2-kanalige Sicherheitsausgänge (Ausgänge werden aus V1 versorgt)

Fehlererkennung/Diagnose

Intern:

■ Modul-Selbsttests: Diagnose, wenn ein Ausgang durch einen internen Fehler nicht mehr in den sicheren Zustand wechseln kann.

Extern:

- Überlast-Diagnose
- Querschluss-Diagnose
- Kurzschluss-Diagnose

Parameter

- Sicherer Ausgang PP-schaltend:
 Sicherer Ausgang, Last zwischen P-Klemme und Ground-Klemme angeschlossen.
- Sicherer Ausgang PM-schaltend: Sicherer Ausgang, Last zwischen P-Klemme und M-Klemme (Masse) angeschlossen (notwendig bei speziellen Lasten, die eine Auftrennung von Ground erfordern).

4.3.4 Universelle Standard-I/Os

Die Funktionsbeschreibung der nicht-sicheren universellen Standard-I/Os ist im zweiten Teil dieser Anleitung zu finden:

TBIP-L...-FDIO1-2IOL – Standard-I/O-Kanäle [▶ 101]

4.3.5 IO-Link-Master-Kanäle

Die Funktionsbeschreibung der nicht-sicheren IO-Link Master-Kanäle ist im dritten Teil 3 dieser Anleitung zu finden:

TBIP-L...-FDIO1-2IOL – Standard-IO-Link-Master-Kanäle [▶ 109]

4.3.6 Konfigurationsspeicher

Im Lieferumfang des TBIP-L...-FDIO1-2IOL ist ein steckbarer Speicherchip enthalten. Er dient zur Speicherung der per Turck Safety Configurator konfigurierten Sicherheitsfunktion. Die Konfiguration eines Gerätes kann mit Hilfe des Speicherchips auf ein anderes Gerät übertragen werden, z. B. beim Gerätetausch.

5 Montieren

5.1 Gerät in Zone 2 und Zone 22 montieren

In Zone 2 und Zone 22 können die Geräte in Verbindung mit dem Schutzgehäuse-Set TB-SG-L (ID 100014865) eingesetzt werden.

GEFAHR

Explosionsfähige Atmosphäre
Explosion durch zündfähige Funken
Bei Einsatz in Zone 2 und Zone 22:

- ► Gerät nur montieren, wenn keine explosionsfähige Atmosphäre vorliegt.
- ► Auflagen durch die Ex-Zulassung beachten.
- ► Gehäuse aufschrauben. Torx-T8-Schraubendreher verwenden.
- Service-Fenster gegen beiligendes Ultem-Fenster austauschen.
- ► Gerät auf die Grundplatte des Schutzgehäuses setzen und beides zusammen auf der Montageplatte befestigen, s. [▶ 23].
- ► Gerät anschließen, s. [≥ 27].
- ► Gehäusedeckel gemäß der folgenden Abbildung montieren und verschrauben. Das Anzugsdrehmoment für die Torx-T8-Schraube beträgt 0,5 Nm.

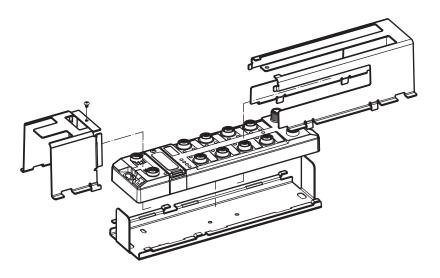


Abb. 7: Gerät in Schlagschutzgehäuse TB-SG-L montieren

5.2 Auf Montageplatte befestigen

ACHTUNG

Befestigung auf unebenen Flächen
Geräteschäden durch Spannungen im Gehäuse

- ► Gerät auf einer ebenen Montagefläche befestigen.
- ▶ Bei der Montage zwei M6-Schrauben verwenden.

Das Gerät kann auf eine ebene Montageplatte aufgeschraubt werden.

- ► Modul mit zwei M6-Schrauben auf der Montagefläche befestigen. Das maximale Anzugsdrehmoment für die Befestigung der Schrauben beträgt 1,5 Nm.
- ▶ Mechanische Spannungen vermeiden.
- ▶ Optional: Gerät erden.

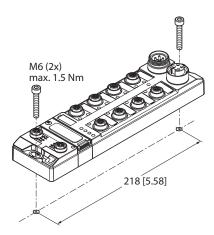


Abb. 8: Gerät auf Montageplatte befestigen

5.3 Gerät erden

5.3.1 Ersatzschaltbild und Schirmungskonzept

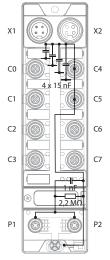


Abb. 9: Ersatzschaltbild und Schirmkonzept – TBIP-L4-FDIO1-2IOL



Abb. 10: Ersatzschaltbild und Schirmkonzept – TBIP-L5-FDIO1-2IOL

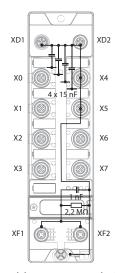


Abb. 11: Ersatzschaltbild und Schirmkonzept – TBIP-LL-FDIO1-2IOL

5.3.2 Schirmung der Feldbus- und I/O-Ebene

Die Feldbus- und I/O-Modul-Ebene der Module können getrennt geerdet werden.

Abb. 12: Erdungsspange (1), Erdungsring (2) und Befestigungsschraube (3)

Der Erdungsring (2) bildet die Modulerdung. Die Schirmung der I/O-Ebene ist mit der Modulerdung fest verbunden. Erst durch die Montage des Moduls wird die Modulerdung mit dem Bezugspotenzial der Anlage verbunden.

Schirmungskonzept der I/O-Module (I/O-Ebene)

Bei der direkten Montage auf eine Montageplatte wird die Modulerdung durch die Metallschraube im unteren Montageloch (3) mit dem Bezugspotenzial der Anlage verbunden. Wenn keine Modulerdung erwünscht ist, muss die elektrische Verbindung zum Bezugspotenzial unterbrochen werden, z. B. durch Verwendung einer Kunststoffschraube.

Schirmungskonzept der Feldbusebene

Im Auslieferungszustand befindet sich an den Steckverbindern für den Feldbusanschluss eine Erdungsspange.

Bei der direkten Montage auf eine Montageplatte wird die Schirmung der Feldbusleitungen über die Erdungsspange und die Metallschraube im unteren Montageloch direkt auf die Modulerdung geführt.

Wenn keine direkte Erdung der Feldbusschirmung erwünscht ist, muss die Erdungsspange entfernt werden. In diesem Fall ist die Feldbusschirmung über ein RC-Glied mit der Modulerdung verbunden.

5.3.3 Gerät erden – I/O-Ebene und Feldbusebene

Die Erdung der Feldbusebene kann entweder direkt über die Erdungsspange (1) oder indirekt über ein RC-Glied mit der Erdung der I/O-Ebene verbunden und abgeführt werden. Wenn die Feldbuserdung über ein RC-Glied abgeführt werden soll, muss die Erdungsspange entfernt werden.



Abb. 13: Erdungsspange (1)

Erdungsspange entfernen: Direkte Erdung der Feldbusebene aufheben

► Erdungsspange mit einem flachen Schlitz-Schraubendreher nach vorn schieben und entfernen.

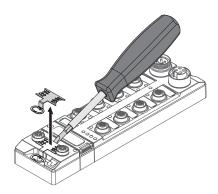


Abb. 14: Erdungsspange entfernen

Erdungsspange montieren: Direkte Erdung der Feldbusebene herstellen

- ► Erdungsspange ggf. mit einem Schraubendreher zwischen den Feldbus-Steckverbindern so wieder einsetzen, dass Kontakt zum Metallgehäuse der Steckverbinder besteht.
- ▶ Der Schirm der Feldbusleitungen liegt auf der Erdungsspange auf.

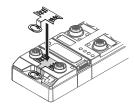


Abb. 15: Erdungsspange montieren

Gerät erden – Montage auf Montageplatte

- ▶ Bei Montage auf einer Montageplatte: Das Gerät mit einer M6-Metallschraube durch das untere Montageloch befestigen.
- Die Schirmung der M12-Flansche für die I/O-Ebene ist über die M6-Metallschraube mit dem Bezugspotenzial der Anlage verbunden.
- ⇒ Bei montierter Erdungsspange: Die Schirmung des Feldbusses ist über die Modulerdung der I/O-Ebene mit dem Bezugspotenzial der Anlage verbunden.

6 Anschließen

WARNUNG

Eindringen von Flüssigkeiten oder Fremdkörpern durch undichte Anschlüsse Lebensgefahr durch Ausfall der Sicherheitsfunktion

- ▶ M12-Steckverbinder mit einem Anzugsdrehmoment von 0,6 Nm anziehen.
- ▶ 7/8"-Steckverbinder mit einem Anzugsdrehmoment von 0,8 Nm anziehen.
- ▶ Nur Zubehör verwenden, das die Schutzart IP65/IP67/IP69K gewährleistet.
- ▶ Nicht verwendete M12-Steckverbinder mit den mitgelieferten Verschraubkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.
- ► Geeignete 7/8"-Verschlusskappen (z. B. Typ RKMV-CCC) verwenden. Die Verschlusskappen sind nicht im Lieferumfang enthalten.

6.1 Gerät in Zone 2 und Zone 22 anschließen

GEFAHR

Explosionsfähige Atmosphäre
Explosion durch zündfähige Funken
Bei Einsatz in Zone 2 und Zone 22:

- ▶ Stromkreise nur trennen und verbinden, wenn keine Spannung anliegt.
- Nur Anschlussleitungen verwenden, die für den Einsatz im explosionsgefährdeten Bereich zugelassen sind.
- ▶ Alle Steckverbinder verwenden oder durch Blindstopfen verschließen.
- ► Auflagen durch die Ex-Zulassung beachten.

6.2 M12-Steckverbinder anschließen

Für den Anschluss der Leitungen an die M12-Buchsen des Gerätes den unten genannten Drehmomentschraubendreher verwenden.

Abb. 16: Drehmomentschraubendreher

Beschreibung	Тур	ID
Drehmomentschraubendreher, Stellbereich 0,41,0 Nm ■ M8 (SW9) ■ M12 für Busleitungen (SW13)	Drehmomentschlüsselset Turck Line + BUS	6936171
M12 für Sensorleitungen (SW14)		

6.3 Gerät an Ethernet anschließen

Zum Anschluss an ein Ethernet-System verfügt das Gerät über einen integrierten Autocrossing-Switch mit zwei 4-poligen M12-Ethernet-Steckverbindern. Das max. Anzugsdrehmoment beträgt 0,6 Nm.

TBIP-L4 und TBIP-L5

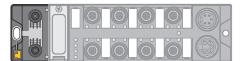


Abb. 17: M12-Ethernet-Steckverbinder

- ▶ Gerät gemäß unten stehender Pinbelegung an Ethernet anschließen.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

Abb. 18: Pinbelegung Ethernet-Anschlüsse

TBIP-LL

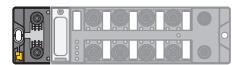


Abb. 19: M12-Ethernet-Steckverbinder

- ► Gerät gemäß unten stehender Pinbelegung an Ethernet anschließen.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

Abb. 20: Pinbelegung Ethernet-Anschlüsse

6.4 Versorgungsspannung anschließen

HINWEIS

Die Geräte werden über V1 versorgt. V2 wird nur durchgeleitet.

TBIP-L4 und TBIP-L5

HINWEIS

Wir empfehlen die Verwendung von 5-poligen vorkonfektionierten Versorgungsleitungen, Turck-Typ 52 (z.B. RKM52-1-RSM52). Geeignete Leitungen finden Sie unter www.turck.com.

Zum Anschluss an die Versorgungsspannung verfügt das Gerät über zwei 7/8"-Steckverbinder. Die Steckverbinder sind 4-polig (TBIP-L4) oder 5-polig (TBIP-L5) ausgeführt. V1 und V2 sind galvanisch voneinander getrennt. Das max. Anzugsdrehmoment beträgt 0,8 Nm.

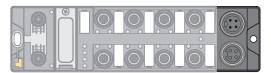


Abb. 21: TBIP-L4... – 7/8"-Steckverbinder zum Anschluss an die Versorgungsspannung

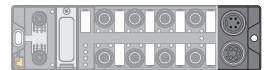


Abb. 22: TBIP-L5... – 7/8"-Steckverbinder zum Anschluss an die Versorgungsspannung

Gerät gemäß unten stehender Pinbelegung an die Versorgungsspannung anschließen.

Abb. 23: TBIP-L4... – Pinbelegung Versorgungsspannungsanschlüsse

Abb. 24: TBIP-L5... – Pinbelegung Versorgungsspannungsanschlüsse

Anschluss	Funktion
X1	Einspeisen der Spannung
X2	Weiterführen der Spannung zum nächsten Teilnehmer

Spannung	Funktion
V1	Systemspannung: Versorgungsspannung 1 (inkl. Elektronikversorgung)
V2	Lastspannung: Versorgungsspannung 2, durchgeleitet, im Gerät nicht verwendet

TBIP-LL

HINWEIS

Wir empfehlen die Verwendung von 5-poligen vorkonfektionierten Versorgungsleitungen z.B. RKP56PLB-1-RSP56PLB/TXG (nicht für den Ex-Einsatz geeignet). Geeignete Leitungen finden Sie unter www.turck.com.

Zum Anschluss an die Versorgungsspannung verfügt das Gerät über zwei 5-polige, L-codierte M12-Steckverbinder. V1 und V2 sind galvanisch voneinander getrennt. Das max. Anzugsdrehmoment beträgt 0,6 Nm.

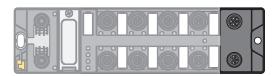


Abb. 25: M12-Steckverbinder zum Anschluss an die Versorgungsspannung

- ► Gerät gemäß unten stehender Pinbelegung an die Versorgungsspannung anschließen.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

Abb. 26: Pinbelegung Versorgungsspannungsanschlüsse

Anschluss	Funktion
XD1	Einspeisen der Spannung
XD2	Weiterführen der Spannung zum nächsten Teilnehmer
Spannung	Funktion
1.14	
V1	Systemspannung: Versorgungsspannung 1 (inkl. Elektronikversorgung)

6.4.1 24-V-Versorgung (SELV/PELV)

WARNUNG

Falsches oder defektes Netzteil

Lebensgefahr durch gefährliche Spannungen an berührbaren Teilen

▶ Ausschließlich SELV- bzw. PELV-Netzteile gemäß EN ISO 13849-2 einsetzen, die im Fehlerfall max. 60 VDC bzw. 25 VAC zulassen.

Fremdversorgung von Sensoren und Aktuatoren

An das Gerät können auch Sensoren und Aktuatoren angeschlossen werden, die fremdversorgt werden. Auch bei fremdversorgten Sensoren und Aktuatoren muss die Verwendung von SELV-bzw. PELV-Netzteilen gewährleistet sein.

Entkopplung externer Stromkreise

Stromkreise, die nicht als SELV bzw. PELV-System ausgelegt sind, müssen durch Optokoppler, Relais oder andere Maßnahmen entkoppelt werden.

WARNUNG

Potenzialunterschiede

Gefährliche Spannungsadditionen

▶ Potenzialunterschiede zwischen internen und externen Lastspannungsversorgungen (24 VDC) vermeiden.

6.5 Sichere Sensoren und Aktuatoren anschließen

HINWEIS

Wir empfehlen vorkonfektionierte 5-polige Sensorleitungen. Geeignete Leitungen finden Sie unter www.turck.com.

GEFAHR

Falsche Speisung der Sensoren und Aktuatoren Lebensgefahr durch Fremdeinspeisung

- ► Fremdeinspeisung ausschließen.
- ► Sicherstellen, dass die Eingänge ausschließlich aus derselben 24-V-Quelle wie die Geräte selbst gespeist werden.

Zum Anschluss von sicheren Sensoren und Aktuatoren verfügt das Gerät über M12-Buchsen. Das max. Anzugsdrehmoment beträgt 0,6 Nm.

Sichere Eingänge (FDI)

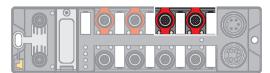


Abb. 27: M12-Steckverbinder, sichere Eingänge (FDI)

- ▶ Sensoren gemäß Pinbelegung an das Gerät anschließen.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

```
1 = V<sub>aux</sub>1/T1
2 = FDI (T2)
1 000 3 3 = GND (V1)
4 = FDI (T1)
5 = T2
```

Abb. 28: Pinbelegung FDI an C0...C1 bzw. X0...X1

Signal	Bedeutung
VAUX1/T1	Sensorversorgung/Testimpuls 1
FDI (T2)	Digitaleingang 2
GND (V1)	Ground V1
FDI (T1)	Digitaleingang 1
T2	Testimpuls 2

Sichere Ein- und Ausgänge (FDX)

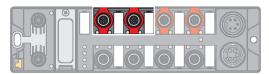


Abb. 29: M12-Steckverbinder, sichere Ein-/ Ausgänge (FDX)

- ▶ Sensoren und Aktuatoren gemäß Pinbelegung an das Gerät anschließen.
- Nicht verwendete Steckverbinder mit geeigneten Verschraub- oder Blindkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.

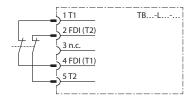
```
-(
2 1 = V<sub>aux</sub>1/T1
2 = FDO-/FDI (T2)
1 0 0 3 3 = GND (V1)
4 = FDO+/FDI (T1)
5 = T2
```

Abb. 30: Pinbelegung FDX an C2...C3 bzw. X2...X3

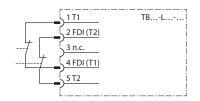
Signal	Bedeutung
VAUX1/T1	Sensorversorgung/Testimpuls 1
FDO-/FDI (T2)	Digitalausgang (M)/Digitaleingang 2
GND (V1)	Ground V1
FDO+/FDI (T1)	Digitalausgang (P)/Digitaleingang 1
T2	Testimpuls 2

GEFAHR

Anschluss flinker Lasten

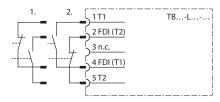

Lebensgefahr durch Fehlschaltung

► Lasten mit mechanischer oder elektrischer Trägheit verwenden. Positive und negative Testpulse müssen toleriert werden.

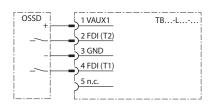

6.6 Schaltungsbeispiele

6.6.1 Eingänge

Sicherer äquivalenter Eingang für potenzialfreie Kontakte (Öffner/Öffner)

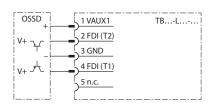


Zwei einzelne Schalter über eine Applikation gleichzeitig schaltend


Sicherer antivalenter Eingang für potenzialfreie Kontakte (Öffner/Schließer)

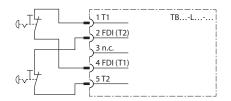
In der antivalenten Verschaltung können Schalter auf unterschiedliche Art angeschlossen werden. Für die Freigabe ist dabei entscheidend, wo der Öffnerkontakt angeschlossen wird.

- Beispiel 1: Die LEDs der Eingänge sind im unbetätigten Zustand aus und leuchten im betätigten Zustand. Nutzung: z. B. bei Tür-Überwachungen mit magnetischen Reed-Kontakten
- Beispiel 2: Die LEDs der Eingänge sind im betätigten Zustand aus und leuchten im unbetätigten Zustand. Nutzung: z. B. bei Zweihandschaltern mit zwei separaten Kontakten


Sicherer elektronischer Eingang (OSSD)

Bei dieser Verschaltung und entsprechender Parametrierung wird die Pulsung von Pin 1 und 5 abgeschaltet. Die Versorgungsspannung an Pin 5 bleibt angeschaltet. Hinweis:

Um Fehler zu vermeiden, keine 5-poligen Leitungen zum Sensor verwenden.


Sicherer elektronischer Eingang (OSSD) antivalent schaltend

Bei dieser Verschaltung und entsprechender Parametrierung wird die Pulsung von Pin 1 und 5 abgeschaltet. Die Versorgungsspannung an Pin 5 bleibt angeschaltet. Der NC-Kontakt wird an Pin 2 angeschlossen, um bei dessen Betätigung eine Freigabe zu erhalten. Anschaltungsbeispiel: Banner STB Touch Hinweis:

► Um Fehler zu vermeiden, keine 5-poligen Leitungen zum Sensor verwenden.

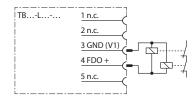
Sichere Eingänge mit einkanaligen mechanischen Kontakten

Eingänge können 1-kanalig abgefragt werden.

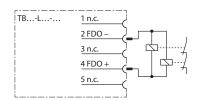
Sensoren über zwei Anschlussleitungen in Kombination mit einem Y-Stecker (z. B. ID: 6634405) verbinden und an die M12-Buchsen der Module anschließen.

Hinweis:

Änderungen an den voreingestellten Eigenschaften der Eingänge wirken sich unmittelbar auf den zu erreichenden Performance Level aus. Nähere Information dazu enthält die Online-Hilfe des Turck Safety Configurators.


6.6.2 Ausgänge

HINWEIS


Jede Änderung des Testpulsintervalls der Ausgänge führt zur Änderung des Performance Levels. Die Software und die Online-Hilfe zur Software enthalten weiterführende Informationen.

Sicherer Ausgang PP-schaltend

- Für PP-schaltende Ausgänge den Minuspol der Last mit dem GND-Anschluss des entsprechenden Ausgangs verbinden (Pin 3).
- Minuspol der Last nicht an anderer Stelle mit dem Ground des Netzteils verbinden.
- Leitung so verlegen, dass ein Fehlerausschluss bezüglich Querschluss zu Fremdpotenzial möglich ist.

Sicherer Ausgang PM-schaltend

► Für PM-schaltende Ausgänge den Minuspol der Last mit dem M-Anschluss des entsprechenden Ausgangs verbinden (Pin 2).

7 In Betrieb nehmen

7.1 Erstinbetriebnahme

7.1.1 Montieren und elektrisch installieren

- ► IP-Adresse am Modul einstellen [39].
- ▶ Auf korrektes Schließen der Schutzabdeckung über den Drehcodierschaltern achten.
- ► Gerät gemäß Vorgaben montieren [≥ 22].
- ► Ethernet-Leitungen gemäß Vorgaben anschließen [≥ 28].
- ► Spannungsversorgung gemäß Vorgaben anschließen [30].
- ► Ein- und Ausgänge in Abhängigkeit ihrer Anwendung verdrahten [▶ 33], [▶ 35].
- ▶ Nicht genutzte Steckverbinder mit entsprechenden Schutzkappen verschließen [▶ 27].

Versorgungsspannung anlegen

- ▶ Bevor die Betriebsspannung eingeschaltet wird, sicherstellen, dass:
 - keine Verdrahtungs- oder Erdungsfehler vorliegen.
 - eine sichere Erdung des Gerätes/der Applikation gegeben ist.
- Versorgungsspannung anlegen.
- ▶ Prüfen, ob alle Versorgungsspannungen und die Ausgangsspannung im zulässigen Bereich liegen.
- Anhand der Diagnose und Status-Anzeigen prüfen, ob das Gerät korrekt arbeitet oder ob Fehler angezeigt werden.

7.1.2 Konfigurieren im Turck Safety Configurator

► Gerät konfigurieren wie im Kapitel "Konfigurieren" [▶ 41] beschrieben.

7.1.3 Gerät an einer Steuerung in Betrieb nehmen

- ► Gerät an der Steuerung in Betrieb nehmen.
- ► Gerät in der Steuerungssoftware konfigurieren [65].
- ▶ Parametrierungs- und Konfigurationsdaten über die Steuerung in das Gerät laden.
- ► Funktionstest durchführen.
- Überprüfen, ob das Gerät gemäß der vorgenommenen Konfiguration arbeitet und alle Sicherheitsfunktionen wie erwartet reagieren.

7.2 Sicherheitsplanung

Die Sicherheitsplanung ist Aufgabe des Betreibers.

7.2.1 Voraussetzungen

- ▶ Gefahren- und Risikoanalyse durchführen.
- ▶ Geeignetes Sicherheitskonzept für die Maschine oder Anlage ausarbeiten.
- ► Sicherheitsintegrität der gesamten Maschine oder Anlage berechnen.
- Gesamtsystem validieren.

7.2.2 Reaktionszeit

Wenn das Gerät mit erhöhter Verfügbarkeit betrieben wird, verlängert sich die max. Reaktionszeit (siehe "Sicherheitskennwerte").

Zusätzlich zur Reaktionszeit im Gerät müssen evtl. Reaktionszeiten der weiteren Safety-Komponenten im System berücksichtigt werden. Informationen dazu entnehmen Sie den technischen Daten der jeweiligen Geräte.

Weitere Informationen zur Reaktionszeit finden Sie in der Online-Hilfe zum Turck Safety Configurator.

7.2.3 Sicherheitskennwerte

Kenndaten	Wert	Norm	
PL (Performance Level)	e	EN/ISO 13849-1:2015	
Sicherheitskategorie	4	_	
$MTTF_D$	> 2500 Jahre (hoch)	_	
Zulässige Gebrauchsdauer (TM)	20 Jahre		
DC	99 %	_	
SIL (Safety Integrity Level)	3	EN 61508	
PFH	4.1×10^{-6}	_	
PFD	5 × 10 ⁻⁶	_	
Maximale Einschaltdauer	12 Monate	_	
SIL CL 3		EN 62061:2005+	
PFH _D	5,8 × 10 ⁻⁹ 1/h	Cor.:2010+A1:2013+A2:2015	
SFF	98,22 %	_	

Max. Reaktionszeit im Abschaltfall	Wert	Norm
CIP Safety > lokaler Ausgang	25 ms	EN 61508
lokaler Eingang > CIP Safety	20 ms	_
Lokaler Eingang <> lokaler Ausgang	35 ms	_

7.3 Gerät adressieren

Das Gerät unterstützt zwei IP-Adressen. Ob die zweite IP-Adresse benötigt wird, ist abhängig von der Anwendung und dem verwendeten CIP-Safety-Scanner.

Die ersten drei Bytes der Main IP Address werden über den Webserver des Geräts (IP-Adresse im Auslieferungszustand: 192.168.1.254) eingestellt. Das letzte Byte der Main IP Address kann über die Drehcodierschalter am Gerät, das Turck Service Tool oder den Webserver eingestellt werden.

HINWEIS

Turck empfiehlt das Einstellen der IP-Adresse über die Drecodierschalter (Static Rotary) am Gerät. Der Rotary-Modus unterstützt den einfachen Gerätetausch.

- Erste IP-Adresse (Main IP Address):
 - IP-Adresse des Geräts für den Zugriff auf das Gerät mit Turck Safety Configurator, SPS, Webserver, Turck Service Tool, etc.
- Zweite IP-Adresse (Secondary IP Address): je nach Anwendung ggf. ohne Funktion, muss dann 0.0.0.0 sein

HINWEIS

Die zweite IP-Adresse (Secondary IP Address) kann nur über den Webserver des Geräts eingestellt werden.

7.3.1 IP-Adresse über Drehcodierschalter einstellen

- ▶ Abdeckung über den Schaltern öffnen.
- ► Letztes Byte der ersten IP-Adresse (Main IP Address) über die drei Drehcodierschalter unter der Abdeckung des Moduls einstellen.
- Spannungsreset durchführen.

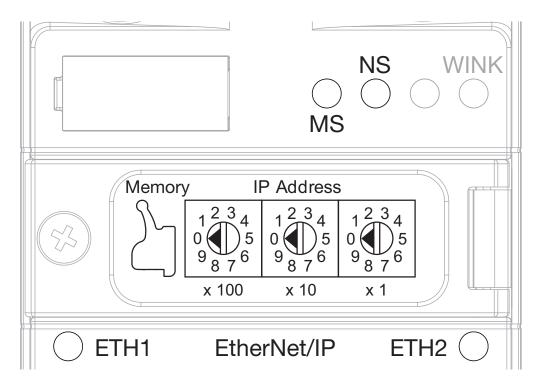


Abb. 31: Drehcodierschalter am Gerät

Das Gerät wird mit der Drehcodierschaltereinstellung 600 (6 - 0 - 0) ausgeliefert.

Schalterstellung	Bedeutung	
000	192.168.1.254	
1254	ROTARY-Modus (Static Rotary): Einstellen des letzten Bytes der ersten IP-Adresse (Main IP Address), Einstellung durch Geräteneustart übernehmen	
300	BOOTP	
400	DHCP	
500	PGM	
600	PGM-DHCP	
900	Factory Reset: Gerät auf Werkseinstellungen zurücksetzen	
901	Erase Memory: Inhalt des Konfigurationsspeichers löschen	

7.3.2 IP-Adresse über den Webserver einstellen

Um die IP-Adresse über den Webserver einstellen zu können, muss sich das Gerät im PGM-Modus befinden.

- Webserver öffnen.
- Als Administrator auf dem Gerät einloggen. Das Default-Passwort für den Webserver ist "password".
- ► Station → Network Configuration anklicken.
- ▶ IP-Adresse und ggf. Subnetzmaske sowie Default-Gateway ändern.
- Neue IP-Adresse, Subnetzmaske und Default-Gateway über Submit in das Gerät schreiben.

HINWEIS

Das Passwort wird in Klartext übertragen.

ACHTUNG

Unzureichend gesicherte Geräte

Unberechtigter Zugriff auf sensible Daten

- ▶ Passwort nach dem ersten Login ändern. Turck empfiehlt, ein sicheres Passwort zu verwenden.
- ▶ Das Passwort an die Anforderungen des Netzwerk-Sicherheitskonzepts der Anlage anpassen, in der die Geräte verbaut sind.

Secondary IP Address über Webserver einstellen

In Abhängigkeit vom verwendeten Safety-Scanner wird ggf. keine zweite IP-Adresse benötigt. In diesen Fällen muss die IP-Adresse auf 0.0.0.0 gesetzt werden.

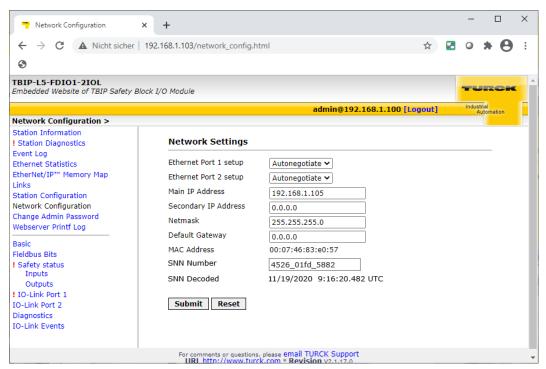


Abb. 32: Webserver – Secondary IP Address auf 0.0.0.0 setzen

8 Konfigurieren

8.1 Turck Safety Configurator installieren

Der Turck Safety Configurator (TSC) steht unter www.turck.com als Zip-Archiv zum Download zur Verfügung.

HINWEIS

Zum Download der Software wird ein Gutscheincode benötigt. Dieser kann beim Turck-Kundendienst angefordert werden. Nähere Informationen dazu enthält die Produktseite der Software.

▶ Zip-Archiv entpacken und Turck Safety Configurator installieren.

8.2 Turck Safety Configurator lizenzieren

Die Lizenzierung der Software erfolgt über einen Gutscheincode.

- Den vorliegenden Gutscheincode über den folgenden Link auf der Turck-Webseite eingeben: https://www.turck.de/de/product/SW_Turck_Safety_Configurator.
- Wenn kein Gutscheincode vorliegt, den Code per E-Mail beim Turck-Kundendienst anfordern: TM-BWSoftwareSupport@turck.com

Software für virtuelle Maschinen (VM) lizenzieren

- ▶ Den vorliegenden Gutscheincode über den folgenden Link auf der Turck-Webseite eingeben: https://www.turck.de/de/product/SW_Turck_Safety_Configurator
- Wenn kein Gutscheincode vorliegt, den Code per E-Mail beim Turck-Kundendienst anfordern: TM-BWSoftwareSupport@turck.com

HINWEIS

Die Software kann nur auf einer virtuellen Maschine mit Internetzugang genutzt werden.

- 8.3 Konfiguration mit dem TSC-Startassistenten erstellen
 - Software starten.
 - ⇒ Der Turck Safety Configurator startet nach der Installation mit dem Startassistenten. Dieser führt durch die ersten Schritte nach dem Programmstart.
- 8.3.1 Master auswählen und Basiskonfiguration erstellen
 - ► Im Fenster **Master auswählen** das verwendete auswählen und die Auswahl mit **OK** bestätigen.

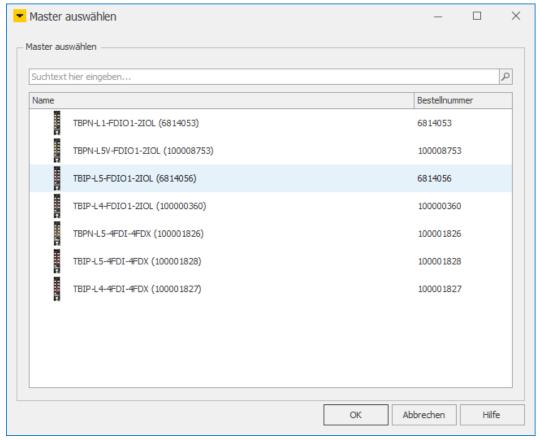
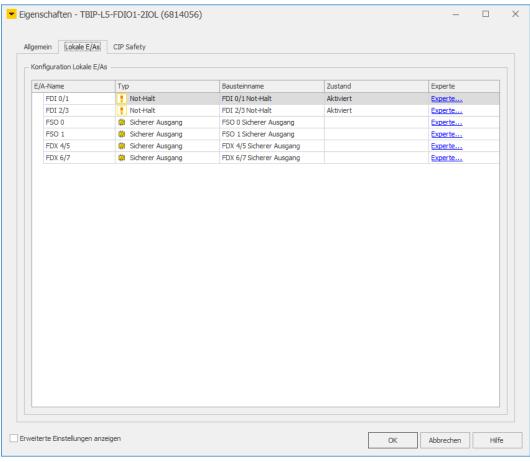



Abb. 33: TSC - Master auswählen

⇒ Das Fenster **Eigenschaften – TB...** öffnet sich.

Abb. 34: TSC - Hardware-Konfiguration

Im Register Lokale E/As werden die sicheren Steckplätze des Geräts konfiguriert.

Basiskonfiguration

In der Basiskonfiguration sind die sicheren Eingänge (FDI) an C0 und C1 als 2-kanalig zwangsgeführte, kontaktbehaftete Eingänge definiert. Die internen sicheren Ausgänge und die sicheren Ein-/Ausgänge (FDX) an C2 und C3 sind als sichere Ausgänge gemäß PLe konfiguriert.

Kanal	Typenbezeichnung	E/A-Typ	Baustein-Bauart
FDI0/1	Not-Halt	Sicherer Eingang (kontaktbehaftet)	Zweikanalig zwangsgeführt
FDI2/3	Not-Halt	Sicherer Eingang (kon- taktbehaftet)	Zweikanalig zwangsgeführt
FSO0	Sicherer Ausgang	Sicherer Ausgang	Sicherer Ausgang nach PLe (Testpuls alle 500 ms)
FSO1	Sicherer Ausgang	Sicherer Ausgang	Sicherer Ausgang nach PLe (Testpuls alle 500 ms)
FDX4/5	Sicherer Ausgang	Sicherer Ausgang	Sicherer Ausgang nach PLe (Testpuls alle 500 ms)
FDX6/7	Sicherer Ausgang	Sicherer Ausgang	Sicherer Ausgang nach PLe (Testpuls alle 500 ms)

- ► Konfiguration mit **OK** abschließen.
- ⇒ Die Basiskonfiguration wird übernommen.
- ⇒ Die Freigabekreise der Basiskonfiguration werden automatisch erstellt.

Freigabekreise der Basiskonfiguration

In der Basiskonfiguration sind die Freigabekreise FGK1...FGK4 und FGK63 und FGK64 fest zugeordnet:

Freigabekreis (FGK)	Kanäle
Freigabekreis 1	FSO0
Freigabekreis 2	FSO1
Freigabekreis 3	FDX4/5
Freigabekreis 4	FDX6/7
	•••
Freigabekreis 63	FDI2/3
Freigabekreis 64	FDI0/1

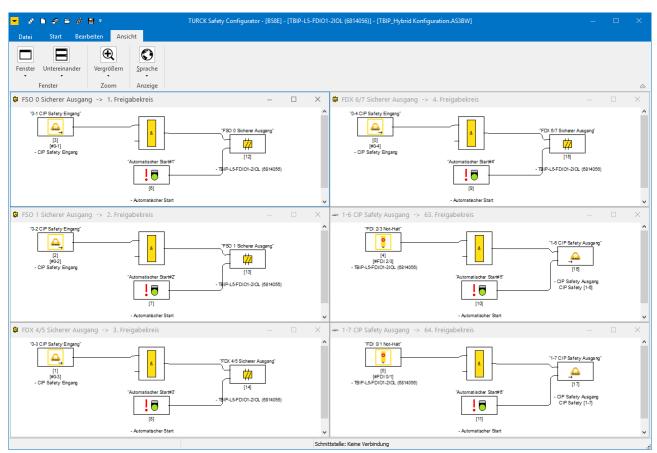


Abb. 35: TSC – Freigabekreise der Basiskonfiguration

8.3.2 Konfiguration der sicheren Kanäle anpassen

Die Kanäle des Geräts werden im Register **Lokale E/As** \rightarrow **Experte** an die Anforderungen der jeweiligen Applikationen angepasst.

Konfigurationsmöglichkeiten

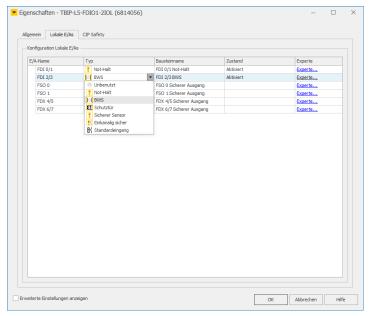


Abb. 36: TSC – Konfiguration der E/As

Ein Klick auf **Experte** öffnet erweiterte Einstellungen für die Ein- bzw. Ausgänge.

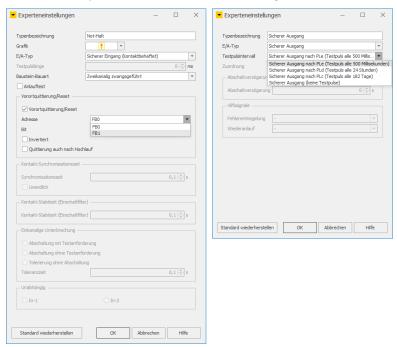


Abb. 37: TSC - Experteneinstellungen

HINWEIS

Die Beschreibung der Funktionen ist Teil der Online-Hilfe zum Turck Safety Configurator.

Beispielkonfiguration

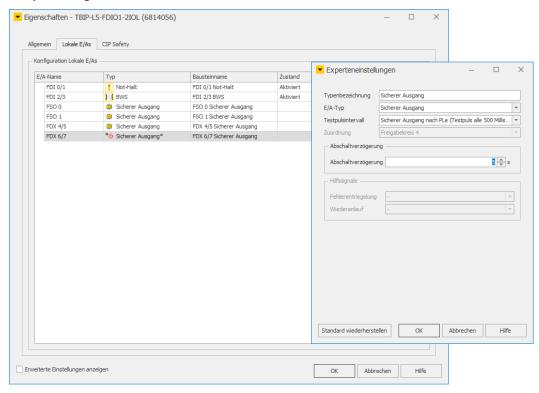


Abb. 38: TSC – Experteneinstellungen (Beipielkonfiguration)

Steckverbinder am Gerät	Kanäle	Тур	E/A-Typ (Experteneinstellung)	Spätere Funktion (siehe Anwendungsbeispiel [> 57])
CO	FDI0/1	Not-Halt	Sicherer Eingang (kontaktbehaftet), 2-kanalig zwangsgeführt	Schaltet Ausgang an FDX4/5 sicher ab.
C1	FDI2/3	Lichtgitter (BWS)	Sicherer Eingang (OSSD), 2-kanalig abhängig	Schaltet Ausgang an FDX4/5 sicher ab.
-	FSO0	Sicherer Ausgang	Sicherer Ausgang nach PLe (Testpuls alle 500 ms)	Interne sichere Ausgänge Die nicht-sicheren Kanäle an
-	FSO1	Sicherer Ausgang	Sicherer Ausgang nach PLe (Testpuls alle 500 ms)	C4C7 bleiben über die internen sicheren Ausgänge dauerhaft eingeschaltet.
C2	FDX4/5	Sicherer Ausgang	Sicherer Ausgang nach PLe (Testpuls alle 500 ms)	Wird sicher abgeschaltet, wenn Ausgang FDX4/5 schaltet, Signal- weiterleitung an die F-CPU
C3	FDX6/7	Sicherer Ausgang, Abschaltverzögerung	Sicherer Ausgang (plus- und minusschaltend, keine Testpulse)	Wird sicher abgeschaltet, wenn Ausgang FDX4/5 schaltet, Signal- weiterleitung an die F-CPU
C4C7		nicht sichere Kanäle		

Experteneinstellungen vornehmen und mit OK schließen.

Erweiterte Einstellungen – globale Fehlerentriegelung

Wenn die **Erweiterten Einstellungen** aktiviert sind, kann über das zusätzliche Register **Service** eine globale Fehlerentriegelung über ein Feldbusbit für das Gerät konfiguriert werden.

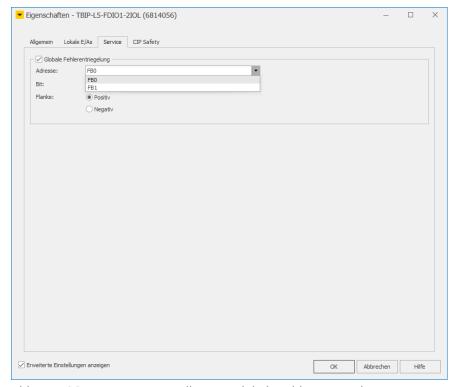


Abb. 39: TSC - Erweiterte Einstellungen, globale Fehlerentriegelung

▶ Globale Fehlerentriegelung einstellen und Eigenschaften-Fenster mit **OK** schließen.

HINWEIS

Die globale Fehlerentriegelung kann auch über das Prozessdatenbit "UNLK" in den Prozessausgangsdaten des Moduls erfolgen.

CIP-Safety-Einstellungen

Im Register **CIP Safety** wird festgelegt, ob die Konfiguration ohne SCID-Zeitstempel, mit einem automatisch generierten SCID-Zeitstempel oder mit einem benutzerdefinierten SCID-Zeitstempel gespeichert wird.

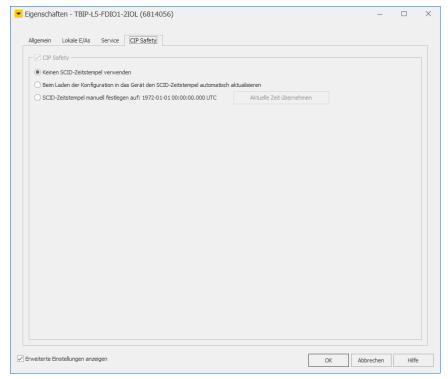


Abb. 40: TSC – CIP-Safety-Optionen

Hardware-Konfiguration im Startassistenten abschließen

- Fenster Hardwarekonfiguration mit OK schließen.
- ⇒ Die Freigabekreise zur Hardware-Konfiguration (Beispielkonfiguration) werden angelegt.

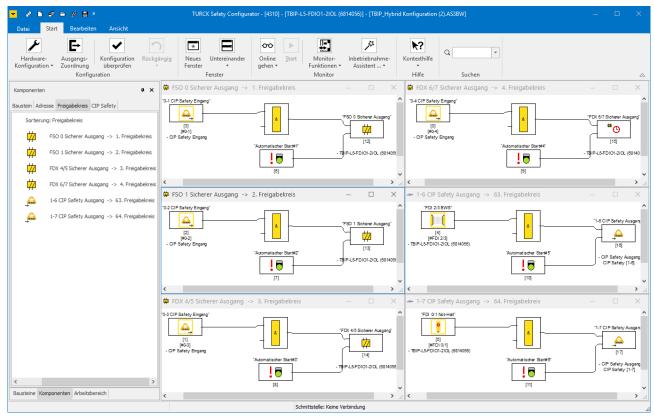


Abb. 41: TSC – Freigabekreise (Beispielkonfiguration)

Kanäle	Тур	Freigabekreis	Anpassung
FDI0/1	Not-Halt	64. Freigabekreis	unverändert
FDI2/3	Lichtgitter (BWS)	63. Freigabekreis	unverändert
FSO0	Sicherer Ausgang	1. Freigabekreis	unverändert
FSO1	Standardeingang	2. Freigabekreis	unverändert
FDX4/5	Sicherer Ausgang	3. Freigabekreis	Zustand von Freigabekreis 64 und 63 führt zur Abschaltung, (siehe "FDX4/5 (1. Freigabekreis) abschalten")
FDX6/7	Sicherer Ausgang Abschaltverzögerung	4. Freigabekreis	Zustand von Freigabekreis 3 führt zur Abschaltung (siehe "FDX6/7 (4. Freigabekreis) abschalten")

8.4 Konfiguration mit dem TSC-Inbetriebnahme-Assistenten laden

Inbetriebnahme-Assistenten starten und Weiter > klicken.

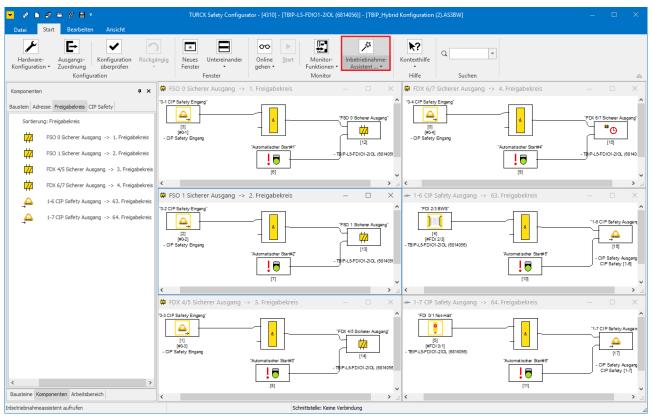


Abb. 42: TSC - Inbetriebnahme-Assistenten starten

▶ Den Namen des Freigebenden und das Passwort für Sicherheitsmonitore (Freigabe-Passwort) im Fenster Einstellungen des Inbetriebnahme-Assistenten vergeben und die Eingabe mit OK bestätigen.

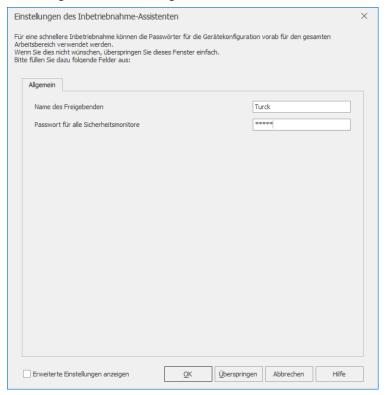


Abb. 43: TSC – Inbetriebnahme-Assistent, Passwort vergeben

⇒ Das angeschlossene TBIP-L...-FDIO1-2IOL wird für den Download vorbereitet.

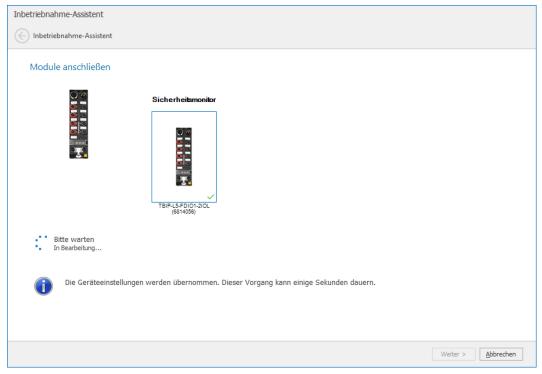


Abb. 44: TSC – Inbetriebnahme-Assistent, Gerät vorbereiten

▶ Optional: Wenn das TBIP-L...-FDIO1-2IOL nicht erkannt wird, unter Ethernet die IP-Adresse des angeschlossenen Geräts eingeben oder das angeschlossene Gerät über die Schaltfläche ... suchen.

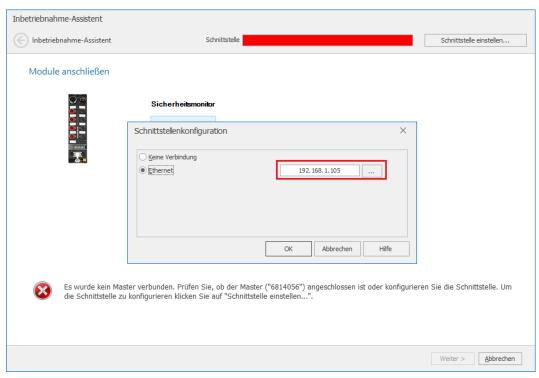


Abb. 45: TSC - Schnittstellenkonfiguration

- ► Eingaben mit **OK** bestätigen und die Einstellungen im Projekt (**Schnittstelle im Arbeitsbereich abspeichern**) speichern.
- ⇒ Die Konfiguration wird an das TBIP-L...-FDIO1-2IOL gesendet. Dieser Vorgang kann einige Sekunden dauern.
- ⇒ Das Konfigurationsprotokoll wird erstellt.

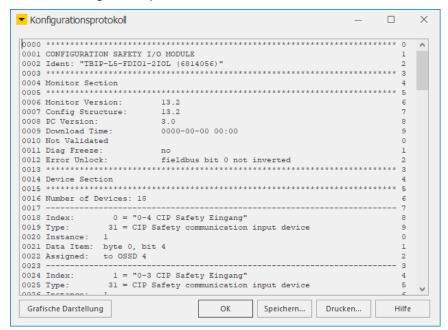


Abb. 46: TSC – Inbetriebnahme-Assistent: Konfigurationsprotokoll

► Konfiguration anhand des Konfigurationsprotokolls überprüfen und das Prüfen bestätigen.

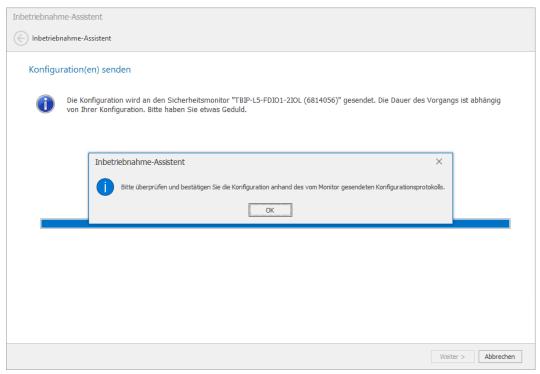


Abb. 47: TSC – Prüfen des Konfigurationsprotokolls bestätigen

Konfiguration im Fenster Freigabe der Konfiguration mit den zuvor definierten Daten (Namen des Freigebenden, Freigabe-Passwort) freigeben.

Abb. 48: TSC - Konfiguration freigeben

⇒ Die Konfiguration ist freigegeben.

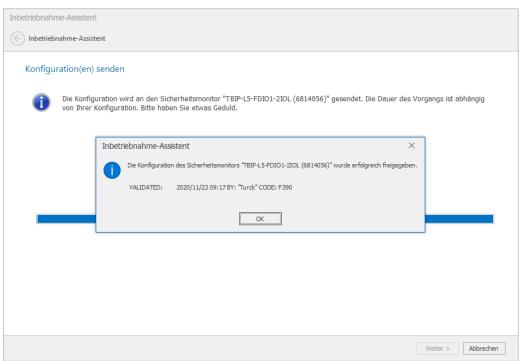


Abb. 49: TSC - Konfiguration freigegeben

- ▶ **OK** klicken und Inbetriebnahme über **Fertigstellen** abschließen.
- Der Turck Safety Configurator wechselt in den Online-Modus und öffnet die Diagnosekonfiguration.

Abb. 50: TSC - Diagnosekonfiguration (online, ohne Kommunikation zur fehlersicheren SPS)

8.5 Anwendungsbeispiel – Sicherheitsfunktion im TSC konfigurieren

Die folgende Sicherheitsfunktion wird mit der Beispielkonfiguration realisiert:

- Der Ausgang FDX4/5 an C2 (3. Freigabekreis) schaltet ab, wenn der Not-Halt an FDI0/1 (64. Freigabekreis) und/oder das Lichtgitter an FDI2/3 (63. Freigabekreis) betätigt werden.
- Der Ausgang FDX6/7 an C5 (4. Freigabekreis) schaltet ab, wenn Ausgang FDX4/5 schaltet. Signalweiterleitung an die F-CPU.
- Nicht-sichere Kanäle an C4...C7 bleiben über die internen sicheren Ausgänge (FSO0 und FSO1) dauerhaft eingeschaltet.
- Die gesamte Sicherheitsfunktion wird über ein Freigabebit in der F-CPU (3. Freigabekreis) freigegeben.
- Der Zustand des Ausgangs FDX4/5 wird in der F-CPU über ein CIP Safety-Bit überwacht.

FDX4/5 (3. Freigabekreis) sicher abschalten

Der Ausgang FDX4/5 an C4 (3. Freigabekreis) soll abgeschaltet werden, sobald der Not-Halt an FDI0/1 (64. Freigabekreis) oder das Lichtgitter an FDI2/3 (63. Freigabekreis) auslösen. D. h., der Zustand der Freigabekreise 63 und 64 steuert den Zustand des Ausgangs FDX4/5.

- ▶ Baustein CIP Safety Eingang im 3. Freigabekreis löschen.
- ▶ Baustein **Zustand Ausgangsschaltelement** aus der Bausteinauswahl an den Eingang der Funktion ziehen und im Fenster **Zustand Ausgangsschaltelement x** unter **Zuordnung** den Freigabekreis 63 auswählen.

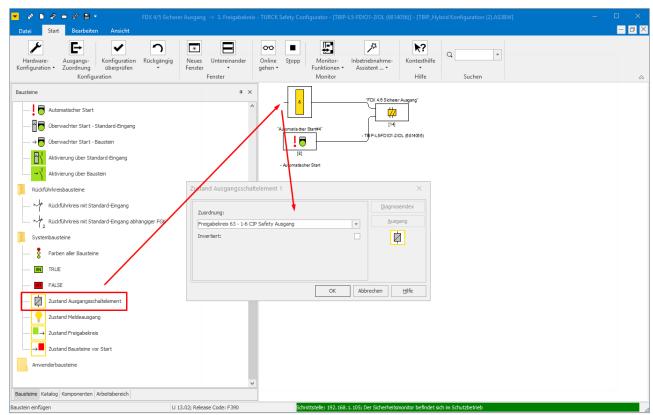


Abb. 51: TSC – 3. Freigabekreis, Zustand Ausgangsschaltelement FGK 63

▶ Weiteren Baustein **Zustand Ausgangsschaltelement** aus der Bausteinauswahl an den zweiten Eingang der Funktion ziehen und im Fenster **Zustand Ausgangsschaltelement x** unter **Zuordnung** den Freigabekreis 64 auswählen.

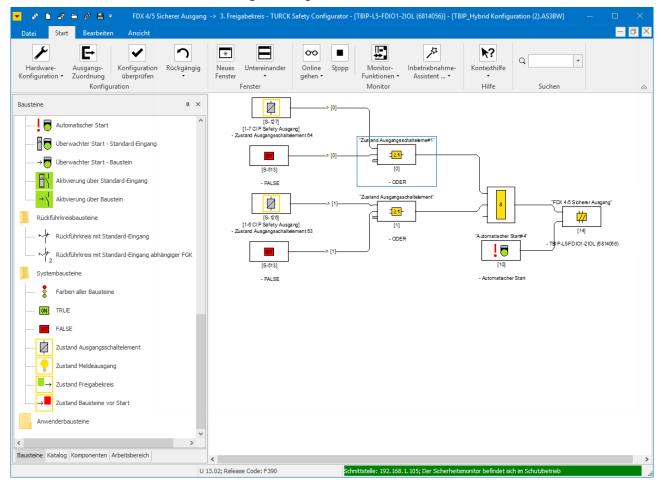


Abb. 52: TSC - 3. Freigabekreis, Zustand Ausgangsschaltelement FGK 63 und FGK 64

⇒ Das Auslösen des Not-Halts an FDI0/1 oder des Lichtgitters an FDI2/3 schaltet Ausgang FDX4/5 ab.

FDX6/7 (4. Freigabekreis) sicher abschalten

Der Ausgang FDX6/7 an C5 (4. Freigabekreis) soll abgeschaltet werden, sobald der Ausgang an FDX4/5 (3. Freigabekreis) schaltet. D. h., der Zustand des Freigabekreises 3 steuert den Zustand des Ausgangs FDX6/7.

- ▶ Baustein CIP Safety Eingang im 4. Freigabekreis löschen.
- ▶ Baustein **Zustand Ausgangsschaltelement** aus der Bausteinauswahl an den Eingang der Funktion ziehen und im Fenster **Zustand Ausgangsschaltelement** x unter **Zuordnung** den Freigabekreis 3 auswählen.

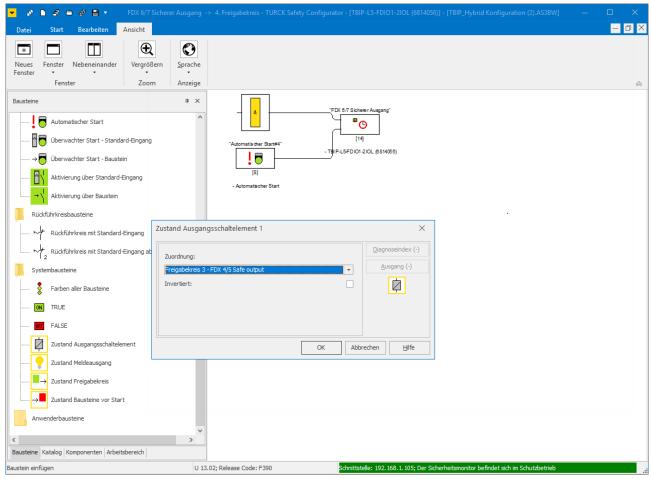


Abb. 53: TSC – 4. Freigabekreis, Zustand Ausgangsschaltelement FGK 3

⇒ Der Zustand des 3. Freigabekreises steuert den Ausgang FDX6/7 im 4. Freigabekreis.

Sicherheitsfunktion über ein Bit in der F-CPU freigeben

Die Freigabe der Sicherheitsfunktion erfolgt über ein Bit in der F-CPU. Dazu wird ein Ausgangsbit der F-CPU mit der Ausgangsfunktion im 3. Freigabekreis verknüpft.

▶ Baustein "CIP Safety Eingang" aus der Bausteinauswahl an den dritten Eingang der Funktion ziehen.

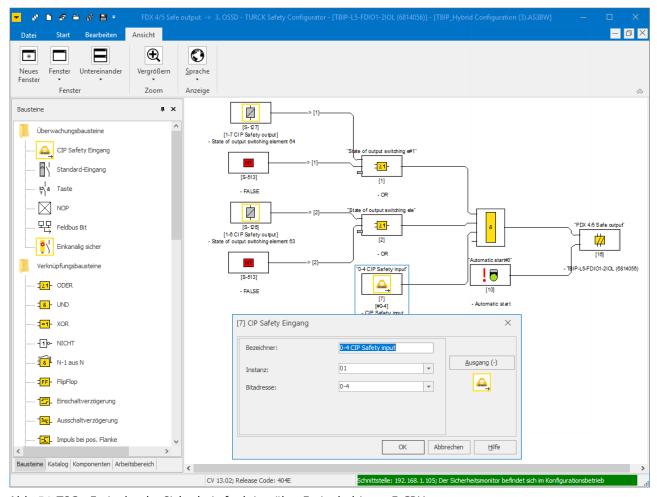


Abb. 54: TSC – Freigabe der Sicherheitsfunktion über Freigabebit aus F-CPU

Die Sicherheitsfunktion startet nach einem Fehler erst, wenn Not-Halt und Lichtgitter fehlerfrei sind **und** das Freigabebit aus der F-CPU gesetzt wird.

Zustand des Ausgangs in der F-CPU überwachen

Der Zustand des Ausgangs wird in der F-CPU über ein CIP Safety-Bit überwacht.

▶ Ausgangszuordnung öffnen und dem Ausgang FDX4/5 ein CIP Safety-Bit zuweisen.

HINWEIS

Für die Ausgangszuordnung stehen nur die Bits der ersten beiden Bytes (Byte 0 und Byte 1) zur Verfügung. Byte 2...7 sind ungenutzt.

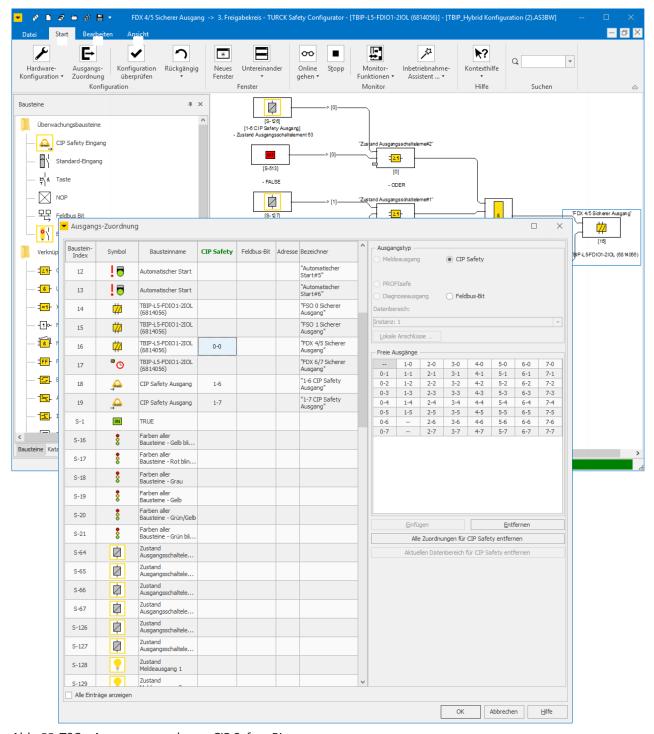


Abb. 55: TSC – Ausgangszuordnung CIP Safety-Bit

8.5.1 Konfiguration prüfen und laden

Der Turck Safety Configurator prüft die erstellte Konfiguration auf logische Fehler, d. h., die logische Verschaltung der einzelnen Komponenten in den Freigabekreisen wird überprüft. Eine Überprüfung der Konfiguration auf Doppelbelegung etc. wird nicht durchgeführt.

- ▶ Überprüfung der Konfiguration über die Schaltfläche "Konfiguration prüfen" starten.
- Konfiguration über den Inbetriebnahme-Assistenten ([▶ 52]) oder die Funktion PC →
 Monitor in das Gerät laden.

8.6 Einkanalige sichere Sensoren konfigurieren

Wenn im Turck Safety Configurator ein Steckplatz als **Einkanalig sicher** konfiguriert wird, wird die Zweikanaligkeit für den Steckplatz aufgehoben.

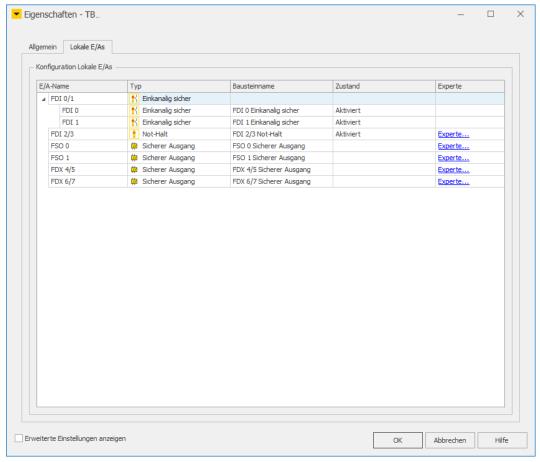


Abb. 56: TSC - Einkanalig sichere Kanäle

Für die einkanaligen Eingänge werden keine Freigabekreise generiert. Die Freigabekreise müssen manuell erstellt werden.

Freigabekreis über die Funktion Neues Fenster anlegen.

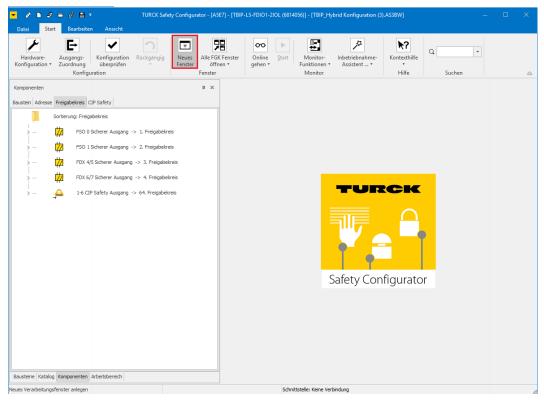


Abb. 57: TSC – Neues Fenster anlegen

► Einkanalig sicheren Eingang aus dem Katalog in das neue Fenster ziehen. Ungenutzte Kanäle sind **fett** dargestellt.

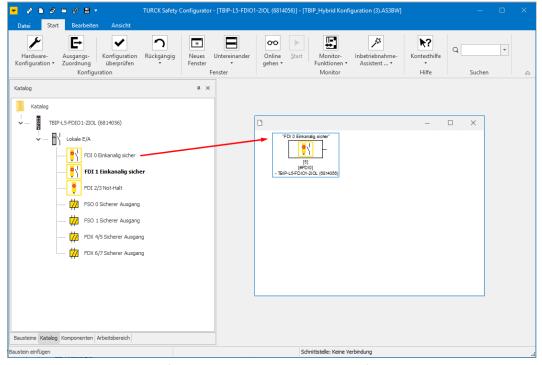
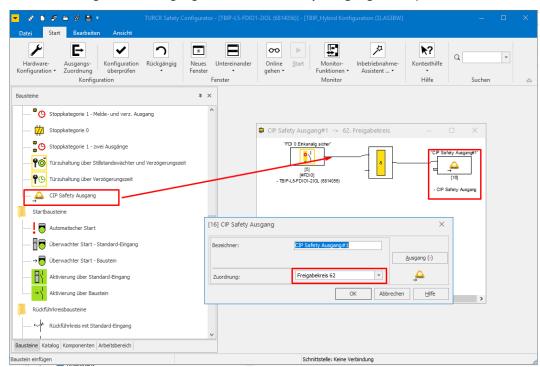



Abb. 58: TSC – Freigabekreis für einkanalig sicheren Eingang konfigurieren

Einkanalig sicheren Eingang mit einem CIP Safety-Ausgang verknüpfen.

Abb. 59: TSC – Einkanalig sicheren Eingang mit der Steuerung verknüpfen

Automatischen Start hinzufügen und zur Überwachung des einkanaligen Sensors in der SPS ein CIP Safety-Bit zuordnen.

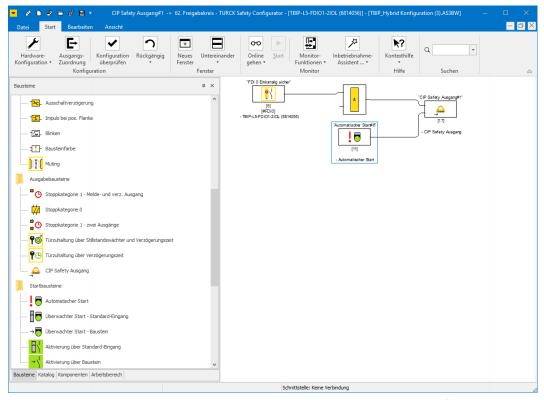


Abb. 60: TSC - Einkanalig sicherer Eingang mit automatischem Start und CIP Safety-Zuordnung

8.7 Gerät an EtherNet/IP in Rockwell Studio 5000 konfigurieren

HINWEIS

Vor der Konfiguration des Geräts in Rockwell Studio 5000:

- ► Turck Safety Configurator schließen.
- ► Gerät neu starten.
- 8.7.1 Verwendete Hardware
 - TBIP-L...-FDIO1-2IOL Main IP-Address: 192.168.1.105
 - Allen-Bradley-Steuerung: Compact Logix 1769-L30ERMS/A LOGIX5370
- 8.7.2 Verwendete Software
 - RSLinx (Rockwell Automation)
 - Studio 5000 (Rockwell Automation)
 - Katalogdatei für Safety-Module

Katalogdateien

Turck bietet die Katalogdatei "TURCK_SAFETY_BLOCK_STATIONS_V….L5K" für die Konfiguration der Geräte in RSLogix/Studio5000 von Rockwell Automation.

Der Modul-Eintrag TBIP-L...-FDIO1-2IOL erstellt eine generische duale EtherNet/IP- und CIP-Safety-Connection, wobei die Moduldefinitionen für beide Verbindungen vorkonfiguriert sind. Darüber hinaus sind die CIP Safety-I/O-Tags der Standard-Konfiguration aus dem Turck Safety Configurator sowie Configuration-Tags und I/O-Tags für das GPIO-Modul vordefiniert.

Der eindeutige Gerätename, die IP-Adresse, die SNN (Safety Network Number) und die Safety Configuration Signature müssen vom Benutzer applikationsabhängig zugewiesen werden. Darüber hinaus muss der Benutzer, falls verfügbar, zusätzliche Modulparametrierungen für das GPIO-Verhalten in den Configuration-Tags vornehmen.

Die Version der verwendeten Katalogdatei muss mit der Revision der verwendeten RSLogix-Software übereinstimmen.

8.7.3 Neues Projekt in Studio 5000 erstellen

- ► Studio 5000 starten.
- New Project klicken, verwendeten Safety Controller auswählen und Projektnamen vergeben.
- ► Mit **Next** bestätigen.

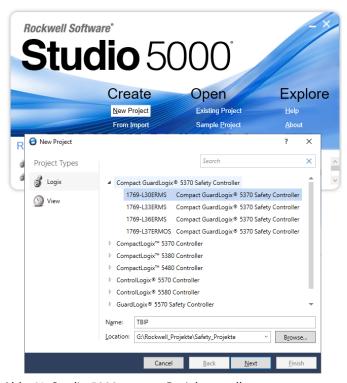


Abb. 61: Studio 5000 – neues Projekt erstellen

Im Fenster New Project gegebenenfalls erforderliche Einstellungen vornehmen und die Projekterstellung über die Schaltfläche Finish abschließen.

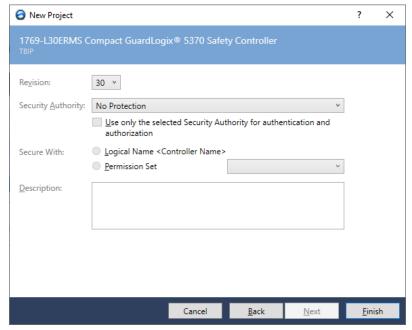


Abb. 62: Studio 5000 - Projekterstellung abschließen

⇒ Das neue Projekt wird erstellt und im RSLogix Designer geöffnet.

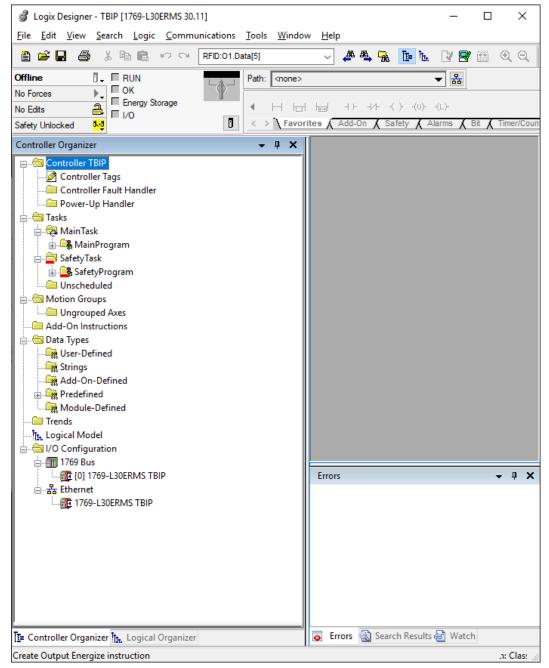


Abb. 63: Logix Designer – Neues Projekt

8.7.4 Katalogdatei öffnen

- ✓ Die Katalogdatei wurde von www.turck.com heruntergeladen.
- ✓ Das ZIP-Archiv wurde entpackt.
- ✓ Die Konfiguration des mit dem Turck Safety Configurator ist abgeschlossen.
- ✓ Ein Studio 5000-Sicherheitsprojekt mit der verwendeten CIP Safety-SPS ist erstellt. [▶ 66]
- ▶ Katalogdatei über einen Import in Studio 5000 öffnen und als Projekt speichern.

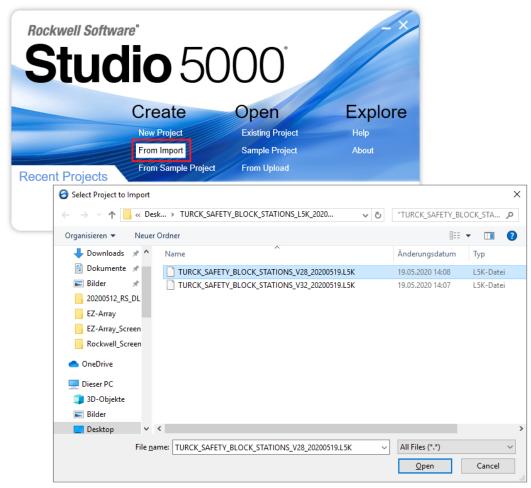


Abb. 64: Logix Designer - Katalogdatei importieren

⇒ Das Projekt mit der Katalogdatei wird angelegt.

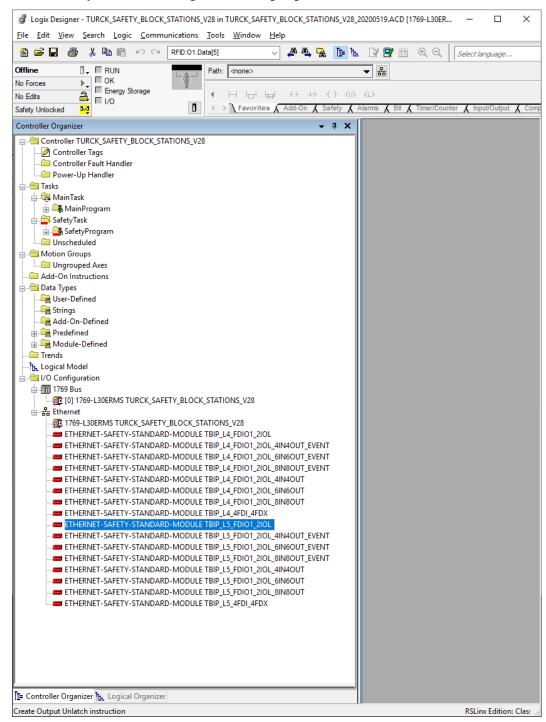


Abb. 65: Logix Designer – Projekt mit Katalogdatei

8.7.5 Gerät in Logix Designer konfigurieren

TBIP-L...-FDIO1-2IOL aus Katalogdatei zum Projekt hinzufügen

Das TBIP-L...-FDIO1-2IOL aus dem Projekt mit der Katalogdatei unter **Ethernet** zum neuen Projekt hinzufügen.

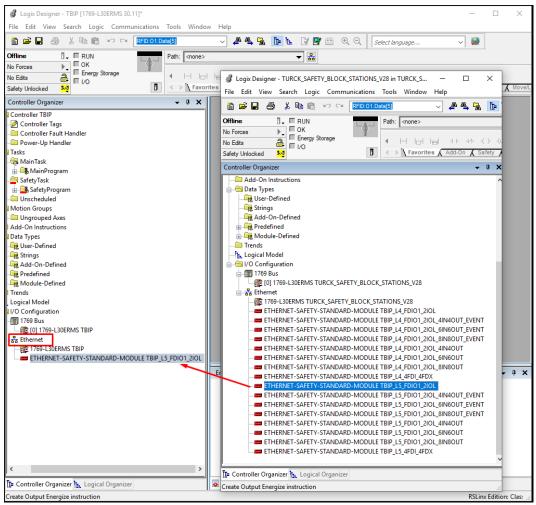


Abb. 66: Logix Designer – TBIP-L5-FDIO1-2IOL zum Projekt hinzufügen

Moduleigenschaften vergeben

► Moduleintrag doppelklicken und im Fenster **Module Properties** einen Namen für das Gerät und die IP-Adresse (im Beispiel 192.168.1.105) vergeben.

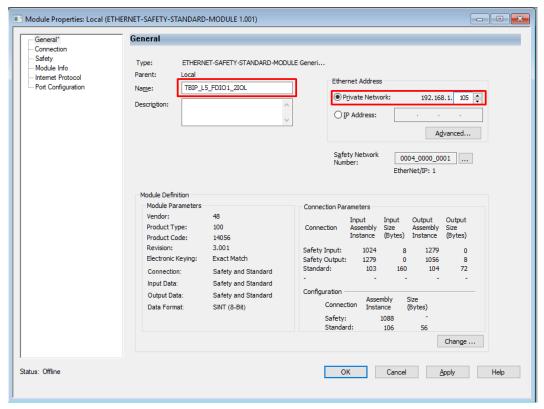


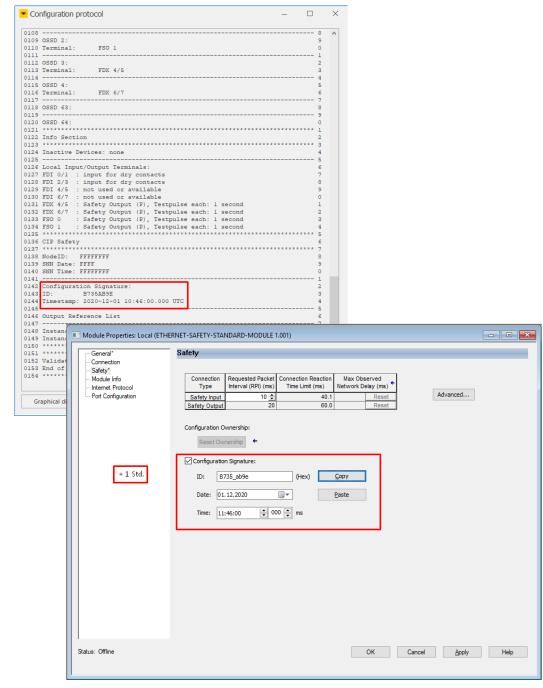
Abb. 67: Logix Designer - Name und IP-Adresse vergeben

Configuration Signature setzen

Die Configuration Signature dient der Steuerung zur eindeutigen Identifizierung des Safety-Geräts und stellt sicher, dass das projektierte Gerät hinsichtlich der konfigurierten Sicherheitsfunktion mit dem angeschlossenen übereinstimmt. Die Configuration Signature besteht aus einer ID und einem Zeitstempel und wird vom Turck Safety Configurator generiert. Die Configuration Signature ist Teil des Konfigurationsprotokolls.

```
    Configuration protocol

0109 OSSD 2:
0110 Terminal:
0111
0113 Terminal:
                  FDX 4/5
0115 OSSD 4:
0116 Terminal:
0117
0118 OSSD 63:
0119
0121 ***
0122 Info Section
0123 ***
0124 Inactive Devices: none
0125
0126 Local Input/Output Terminals
0127 FDI 0/1 : input for dry contacts
0128 FDI 2/3 : input for dry contacts
0129 FDI 4/5 : not used or available 0130 FDI 6/7 : not used or available
0138 NodeID: FFFFFFF
0139 SNN Date: FFFF
0141
0142 Configuration Signature
0143 ID:
              B735AB9E
0144 Timestamp: 2020-12-01 10:46:00.000 UTC
0145
0146 Output Reference List
0147
0151 ****
                          2020-12-01 10:46 by: "Turck" code: 6727 count:
0153 End of Configuration
   Graphical display
                                               Save...
                                                          Print...
                                                                      Help
```


Abb. 68: TSC - Konfigurationsprotokoll aus dem Beispielprojekt mit Configuration Signature

HINWEIS

Die Zeitangabe im Konfigurationsprotokoll des Turck Safety Configurators wird anhand der Systemzeit (lokale Ortszeit) des Computers berechnet, auf dem die Software installiert ist. Die Zeitangabe im Logix Designer basiert hingegen auf der UTC-Zeit. Daher ist eine Umrechnung der Systemzeit-basierten Angabe im Protokoll auf UTC-Zeit erforderlich. In diesem Beispiel wird die MEZ (Mitteleuropäische Winterzeit) + 1 Stunde im Logix Designer eingegeben.

► Configuration Signature unter **Safety** → **Configuration Signature** setzen.

Abb. 69: Logix Designer – Eingeben der Configuration Signature aus dem Konfigurationsprotokoll

Berechnungsbeispiele

MEZ	UTC	MESZ	UTC
(Winterzeit)	MEZ + 1 Std.	(Sommerzeit)	MESZ + 2 Std.
13:41:00.000	14:41:00.000	14:41:00.000	16:41:00.000

▶ Module Properties über OK speichern und Konfiguration abschließen.

Projektpfad definieren

- ▶ Netzwerk über **Communications** → **Who Active** durchsuchen.
- ▶ Verwendeten Controller auswählen.
- ▶ Projektpfad im Projekt über die Schaltfläche **Set Project Path** definieren.

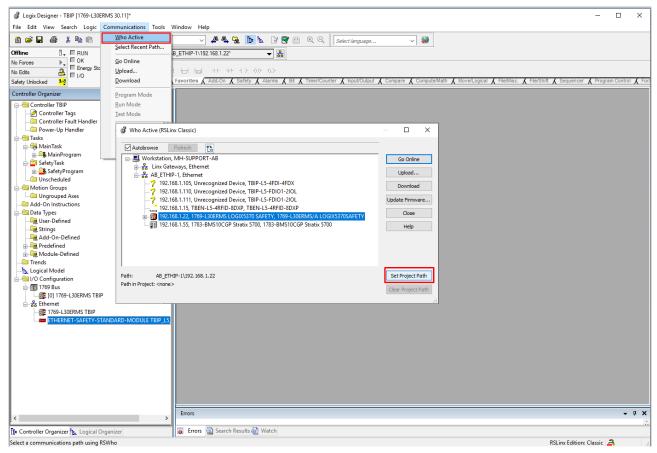


Abb. 70: Logix Designer - Who Active - Projektpfad setzen

Fenster Who Active schließen.

Online-gehen mit der Steuerung

- ▶ Offline → Go Online klicken.
- Konfiguration über Download im Fenster Connected To Go Online in die Steuerung laden
- Den Download im Fenster Download über die Schaltfläche Download ausführen.

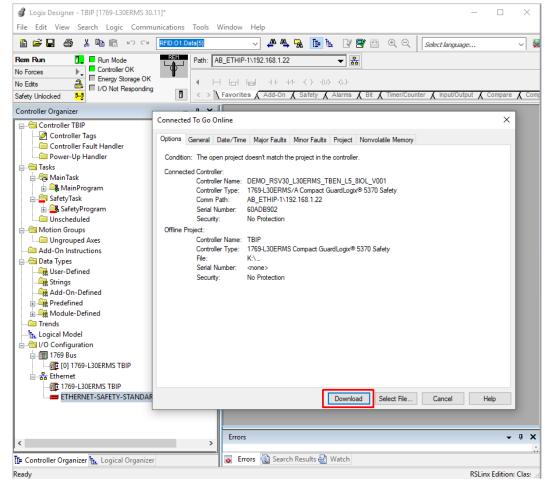


Abb. 71: Logix Designer - Download der Konfiguration in die Steuerung

⇒ Der Download wird ausgeführt.

⇒ Das TBIP-L...-FDIO1-2IOL (ETHERNET-SAFETY-STANDARD-MDOULE TBIP_L5_4FDI_4FDX) im Projektbaum zeigt einen Fehler.

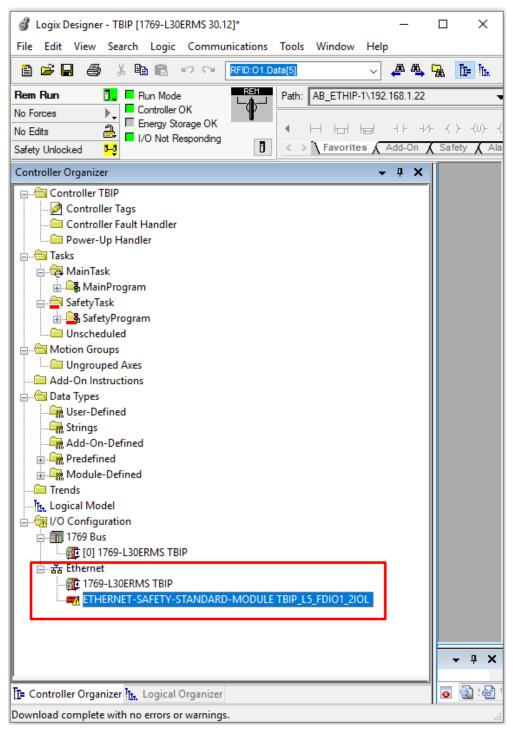


Abb. 72: Logix Designer – Fehler am Gerät

► Moduleigenschaften (Module Properties) durch Doppelklick auf den Geräteeintrag im Projektbaum öffnen.

⇒ Im Register **Connection** wird im Bereich **Module Fault** der Fehler definiert: "Safety network number mismatch".

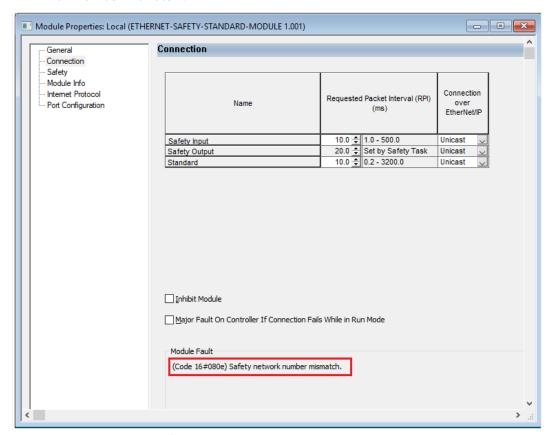


Abb. 73: Logix Designer – Safety network number mismatch

Bevor eine Verbindung zum Gerät hergestellt werden kann, muss die CIP Safety Ownership konfiguriert werden. Dabei wird das TBIP-L...-FDIO1-2IOL über die Safety Network Number (SNN) dem CIP Safety Controller zugeordnet.

Safety Network Number vergeben

Die Safety Network Number ordnet das Safety-I/O-Modul eindeutig einem CIP Safety Controller zu. Dies verhindert bei mehreren Controllern im Netzwerk einen versehentlichen Zugriff eines anderen Controllers auf das Safety-Modul.

Safety Network Number vom Controller kopieren

- ▶ Offline gehen.
- ► Controller Properties öffnen.
- Im Register **General** über einen Klick auf ... (rechts neben der Safety Network Number) das Fenster **Safety Network Number** öffnen.
- ► Safety Network Number über die Schaltfläche **Copy** kopieren und das Fenster über **OK** schließen.

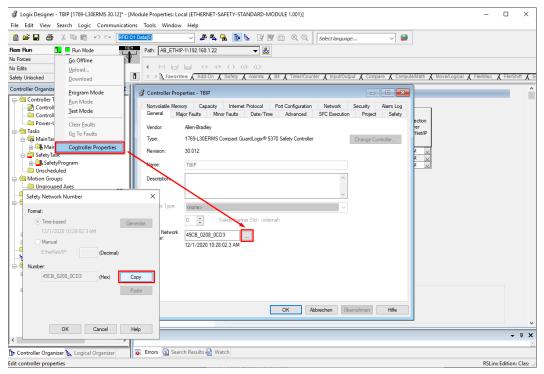


Abb. 74: Logix Designer – Safety Network Number kopieren

Safety Network Number dem Gerät zuweisen

- ▶ Module Properties des TBIP-L...-FDIO1-2IOL öffnen und über ... das Fenster Safety Network Number öffnen.
- Safety Network Number über die Schaltfläche **Paste** vom Controller in die Modulkonfiguration kopieren und Fenster mit **OK** schließen.

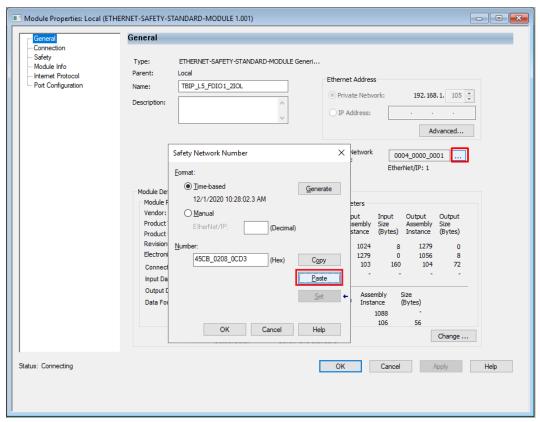


Abb. 75: Logix Designer – Safety Network Number in die Moduleigenschaften übernehmen

Reset Ownership

Wenn ein Gerät bereits an einem CIP Safety Controller verwendet wurde, muss es zunächst über einen **Reset Ownership** zurückgesetzt werden.

- ▶ Online gehen.
- Im Register **Safety** in den **Module Properties** die Funktion **Reset Ownership** klicken und die eingeblendeten Warnungen bestätigen.



Abb. 76: Logix Designer – Reset Ownership

- ► Im Register **General** in den **Module Properties** erneut das Fenster **Safety Network Number** öffnen.
- ▶ Die Safety Network Number über **Set** in das Gerät schreiben und das Schreiben im Fenster **Safety Network Number** bestätigen.

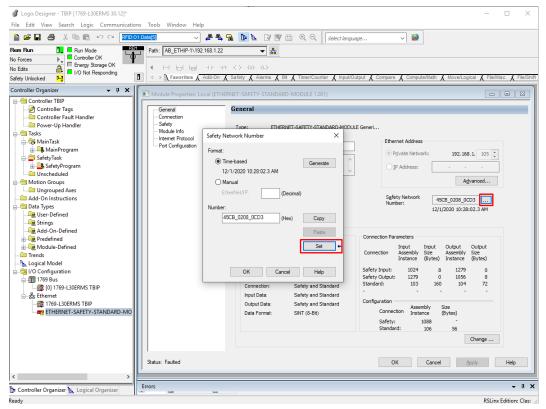


Abb. 77: Logix Designer – Safety Network Number in das Gerät schreiben

9 Betreiben

9.1 LED-Anzeigen

Das Gerät verfügt über folgende LED-Anzeigen:

- Versorgungsspannung
- Sammel- und Busfehler
- Status
- Diagnose

LED PWR	Bedeutung
aus	keine Spannung oder Unterspannung an V1
grün	Spannung an V1 und V2 ok
rot	kein gültiger Zustand, Gerät geht in den sicheren Zustand
rot/grün	kein gültiger Zustand, Gerät geht in den sicheren Zustand

LED 03 (C0C1 bzw. X0X1)	Bedeutung
aus	Eingang inaktiv
grün	Eingang aktiv
blinkt grün	Selbsttest Eingang
blinkt rot	Querschluss
rot	Diskrepanz

LED 47	Bedeutung						
(C2C3 bzw. X2X3)	Kanal ist Eingang	Kanal ist Ausgang					
aus	Eingang inaktiv	Ausgang inaktiv					
grün	Eingang aktiv	Ausgang aktiv					
blinkt grün	Selbsttest Eingang	-					
blinkt rot	Querschluss	-					
rot	Diskrepanz	Überlast					

LED 07	Bedeutung
alle abwechselnd rot blinkend	Schwerer Ausnahmefehler (Fatal Error)

HINWEIS

Das Gerät führt nach dem Einschalten einen Selbsttest durch. Die MS- und die NS-LED blinken währenddessen abwechselnd rot/grün. Wenn der Selbsttest abgeschlossen ist, blinkt die MS-LED weiter rot/grün, die NS-LED erlischt bis das Sicherheitsprogramm im Gerät vollständig geladen ist. Nach der Hochlaufphase haben die Zustände der LEDs die im Folgenden beschriebenen Bedeutungen.

Spannungsversorgung fehlt
keine Diagnose, Gerät arbeitet normal
 Verwendung mit Safety-Steuerung, Gerät ist EtherNet/IP-Server: Gerät ist im Status Idle oder im Standby. Verwendung ohne Safety-Steuerung: Gerät ist im Schutzbetrieb, ein EtherNet/IP-Client greift auf die Standard-I/Os zu.
kritischer Fehler: Gerät hat einen nicht zu behebenden Fehler Geräteaustausch ggf. notwendig.
behebbarer Fehler
 während der Hochlaufphase: Gerät im Selbsttest im laufenden Betrieb: Konfiguration notwendig, Unique Node Identifier fehlt, ist unvollständig oder fehlerhaft
Bedeutung
Gerät nicht onlineSpannungsversorgung fehlt
aktive Verbindung zu einem Master
Gerät online, aber keine VerbindungVerbindung aufgebaut, aber nicht vollständig abgeschlossen
Kommunikationsfehler
eine oder mehrere I/O Verbindungen sind im Time-out-Status.
 während der Hochlaufphase: Gerät befindet sich im Selbsttest. im laufenden Betrieb: Netzwerkzugriffsfehler erkannt, Kommunikation fehlgeschlagen (Communication Faulted State)

LED WINK	Bedeutung
blitzt weiß	Unterstützung zur Lokalisierung des Geräts, wenn Blink-/Wink-Kommando aktiv

Hinweis: Die Ethernetanschlüsse P1 und P2 bzw. XF1 und XF2 verfügen jeweils über eine LED ETH bzw. L/A.

Bedeutung
keine Ethernet-Verbindung
Ethernet-Verbindung hergestellt, 100 Mbit/s
Datentransfer, 100 Mbit/s
Ethernet-Verbindung hergestellt, 10 Mbit/s
Datentransfer, 10 Mbit/s

9.2 Status- und Control-Wort

Status-Wort

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Byte 1	-	-	-	-	-	-	-	DIAG	
Byte 0	-	FCE	-	-	-	COM	V1	-	

Bit	Beschreibung
COM	interner Fehler Die Geräte-interne Kommunikation ist gestört.
DIAG	Diagnosemeldung am Gerät
FCE	Der DTM-Force-Mode ist aktiviert, die Ausgangszustände entsprechen ggf. nicht mehr den vom Feldbus gesendeten Vorgaben.
V1	V1 zu niedrig (< 18 VDC)

Control-Wort

Das Control-Wort hat keine Funktion.

9.3 Prozess-Eingangsdaten

Dieses Kapitel enhält die Beschreibung der Prozess-Eingangsdaten der sicheren I/O-Kanäle. Die Prozess-Eingangsdaten der IO-Link-Kanäle sowie der universellen Standard-I/O-Kanäle sind nicht sicherheitsrelevant und werden nur der Vollständigkeit halber dargestellt. Die detaillierte Beschreibung der Prozessdaten der nicht-sicherheitsrelevanten Kanäle finden Sie im zweiten und dritten Teil der Betriebsanleitung.

9.3.1 Übersicht – Gesamtmodul

Die Prozess-Eingangsdaten des Geräts sind wie folgt aufgebaut:

	Wort-Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status- word	n								Siehe	[▶84]						
Basic	n + 1 n + 2	S	Statusmeldungen für standard-I/O-Kanäle [▶ 105] und IO-Link-Master-Kanäle [▶ 124]														
Feldbus- bits	n + 3		Status der sicheren Einheit [▶ 87]														
Safety- Status	n + 4 n + 10		Prozesseingangsdaten sichere I/O-Kanäle [▶ 86]														
IO-Link- Kanäle	n + 11 n + 42					IC)-Link-	-Proze	ss-Ein	gangs	dater	ı [▶ 12	24]				
Diagnosen	n + 43	-	-	-	-	-	-	-	-		Üb	erstro	mdia	gnose	n [▶ 1	05]	
	n + 44			DXP-[Diagno	osen [105]		-	-	-	-	-	-	-	-
	n + 45 n + 46		IO-Link-Port-Diagnosen [▶ 124]														
IO-Link- Events	n + 46 n + 78		IO-Link-Events [▶ 124]														
Moduls- Status	n + 79							Мо	dulsta	tus [84]						

9.3.2 Prozess-Eingangsdaten – sichere I/O-Kanäle

Die sicheren Ein- und Ausgänge belegen 16 Byte des Prozesseingangsabbildes.

Wort-	Bit-Nr.															
Nr.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Status	Status der sicheren Einheit (Feldbusbits)															
n + 3	FBI 1-7	FBI 1-6	FBI 1-5	FBI 1-4	FBI 1-3	FBI 1-2	FBI 1-1	FBI 1-0	FBI 0-7	FBI 0-6	FBI 0-5	FBI 0-4	FBI 0-3	FBI 0-2	FBI 0-1	FBI 0-0
						5	afe Un	it Statı	ıs [▶ 8	8]		•				
n + 4	-	-	-	-	-	-	-	-	-	-	-	-	-	SUMM	SUCM	SUPM
Error-Codes [▶ 88]																
n + 5	-	-	-	-	-	-	-	-	-	-	-	68	67	66	65	64
Memory and F-Config Status [▶ 88]																
n + 6	-	-	-	-	-	-	-	-	FERR		-	COM- LO	-	CNFM M	NCNF	PMS
							Safe S	Status	[89]							
n + 7	Steckp	olatz C1	1/X1						Steckplatz C0/X0							
	OVL	-	TC CH1	TC CH0	ERR FIN	TEST	WAIT	RGG	OVL	-	TC CH1	TC CH0	ERR FIN	TEST	WAIT	RGG
n + 8	Steckp	olatz C3	3/X3						Steckplatz C2/X2							
	OVL	-	TC CH1	TC CH0	ERR FIN	TEST	WAIT	RGG	OVL	-	TC CH1	TC CH0	ERR FIN	TEST	WAIT	RGG
n + 9	Steckp	olatz C	5/X5						Steck	olatz C4	I/X4		•			
	OVL	-	TC CH1	TC CH0	ERR FIN	TEST	WAIT	RGG	OVL	-	TC CH1	TC CH0	ERR FIN	TEST	WAIT	RGG
n +	Steckp	olatz C	7/X7						Steckplatz C6/X6							
10	OVL	-	TC CH1	TC CH0	ERR FIN	TEST	WAIT	RGG	OVL	-	TC CH1	TC CH0	ERR FIN	TEST	WAIT	RGG

Feldbusbits (Status der sicheren Einheit)

Wort-Nr.	Bit-N	Bit-Nr.													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
n + 3	FBI	FBI	FBI	FBI	FBI	FBI	FBI	FBI	FBI	FBI	FBI	FBI	FBI	FBI	FBI
	1-7	1-6	1-5	1-4	1-3	1-2	1-1	1-0	0-7	0-6	0-5	0-4	0-3	0-2	0-1

Bit	Beschreibung
	Eingänge im TBIP-LFDIO1-2IOL, die vom nicht-sicheren Teil der Steuerung angespro- chen werden können. Diese Bits müssen im Turck Safety Configurator vom Anwender kon- figuriert werden.

HINWEIS

Die Feldbusbits FBI 1-0...FBI 1-7 werden auf die Eingänge der DXP-Kanäle der nicht sicheren Seite des Geräts gemappt (FBI 1-0 auf DI8, FBI 1-1 auf DI9, etc.).

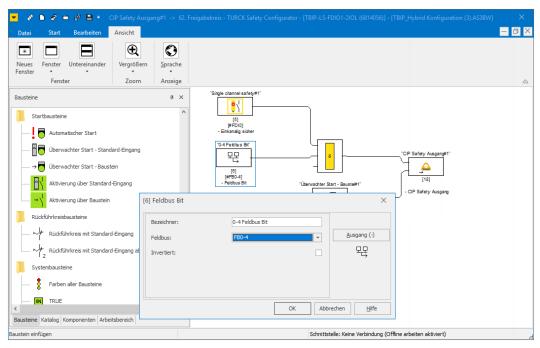


Abb. 78: TSC - Eingangszuordnung

Safe Unit Status

Name	Wert	Bedeutung						
SUPM	Geschützter Betriebsmodus							
	0	aktiv						
	1	nicht aktiv						
SUCM	Konfigurationsmodus							
	0	aktiv						
	1	nicht aktiv						
SUUM	Unbekannter Modus							
	0	aktiv						
	1	nicht aktiv						

Error Codes

Code	Name	Bedeutung	Abhilfe
64 (0x40)	Falsche Zieladresse	Die eingestellte IP-Adresse stimmt nicht mit der parametrierten IP- Adresse überein.	Parameter anpassen.Gerät neu starten.
65 (0x41)	Ungültige Zieladresse	Die eingestellte Ziel-IP-Adresse ist nicht gültig. Die Adressen 0x00 und 0xFF sind nicht zulässig.	_
66 (0x42)	Ungültige Quelladresse	Die eingestellte Quell-IP-Adresse ist nicht gültig. Die Adressen 0x00 und 0xFF sind nicht zulässig.	
67 (0x43)	Ungültige Watchdogzeit	Unzulässiger Wert der Watchdogzeit (F_WD_Time, F_WD_Time_2). Eine Watchdogzeit von 0 ms ist nicht zulässig.	_
68 (0x44)	SIL-Wert überschritten	Die geforderte SIL-Klasse wird vom Gerät nicht unterstützt.	

Memory und F-Config Status

Code	Bedeutung
512	Kein Speicherchip vorhanden
513	Keine Konfiguration vorhanden
514	Unterschiedliche Konfigurationen vorhanden
516	Kommunikationsverlust
519	Schwerwiegender Ausnahmefehler
	512 513 514 516

Safe-Status (Steckplatz C0...C7 bzw. X0...X7)

Name	Code	Bedeutung
RGG	-	normaler Betriebsstatus
WAIT	528	Warten auf Eingangssignal
TEST	544	Eingang testen
ERRFIN	560	Fehler am Eingang
TCCH0	576	Querschluss Kanal 0
TCCH1	592	Querschluss Kanal 1

9.4 Prozess-Ausgangsdaten

Dieses Kapitel enhält die Beschreibung der Prozess-Ausgangsdaten der sicheren I/O-Kanäle. Die Prozess-Ausgangsdaten der IO-Link-Kanäle sowie der universellen Standard-I/O-Kanäle sind nicht sicherheitsrelevant und werden nur der Vollständigkeit halber dargestellt. Die detaillierte Beschreibung der Prozessdaten der nicht-sicherheitsrelevanten Kanäle finden Sie im zweiten und dritten Teil der Betriebsanleitung.

9.4.1 Übersicht – Gesamtmodul

Die Prozess-Ausgangsdaten des Geräts sind wie folgt aufgebaut:

	Wort-Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Basic	n + 1	Cont	ontrol: DXP-Kanäle														
Feldbusbits	n + 2	Statu	tatus der sicheren Einheit [▶ 91]														
Safety- Status	n + 3	Unlo	Inlock Safe Unit [▶ 90]														
IO-Link- Kanäle	n + 4 n + 5	IO-Link-Prozess-Ausgangsdaten [▶ 126]															

9.4.2 Prozess-Ausgangsdaten – sichere I/O-Kanäle

Wort- Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Feldb	Feldbusbits [▶ 91]															
n + 2	FBO15	FBO14	FBO13	FBO12	FBO11	FBO10	FBO9	FBO8	FBO7	FBO6	FBO5	FBO4	FBO3	FBO2	FBO1	FBO0
Unloc	k Safe l	Jnit [▶ 9	90]				•			•						
n + 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	UNLK
n + 4	n + 4 reserviert															

Unlock Safe Unit

Name	Bedeutung
UNLK	Das Bit dient zum Entriegeln der sicheren Einheit. Es reagiert auf eine fallende Flanke.

- ▶ Bit UNLK auf 1 und anschließend auf 0 setzen.
- ⇒ Die sichere Einheit ist entriegelt.

Feldbusbits

Name	Bedeutung
FB0.0 FB1.7	Diese Ausgangsbits können im Turck Safety Configurator mit Zuständen der sicheren Signale verknüpft und der nicht-sicheren Steuerung als Eingänge genutzt werden.

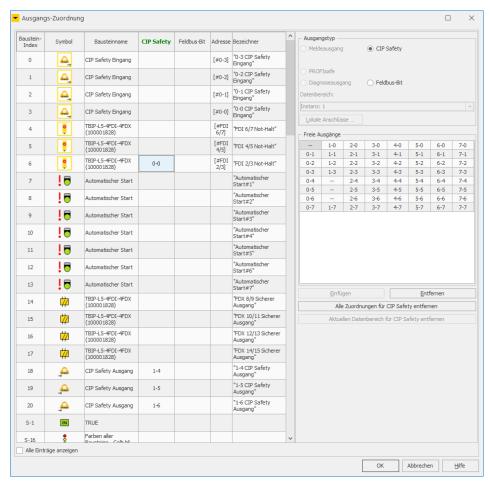


Abb. 79: Ausgangszuordnung im Turck Safety Configurator

9.5 Konfigurationsspeicher verwenden

9.5.1 Konfiguration speichern

Das Speichern der Sicherheitsfunktion auf dem Speicherchip erfolgt automatisch, nachdem eine Konfiguration über den Turck Safety Configurator in das Gerät geladen wurde.

HINWFIS

Nicht sicherheitsrelevante Konfigurationen wie die IP-Adresse werden nicht auf dem Speicherchip abgelegt.

Konfiguration beim Modulstart speichern

- ✓ Das Gerät wird nicht mit Spannung versorgt.
- ✓ Ein leerer Speicherchip ist vorhanden.
- ✓ Im Gerät ist eine gültige Konfiguration gespeichert.
- ▶ Leeren Speicherchip auf das Gerät stecken.
- ▶ Spannungsversorgung einschalten.
- ⇒ Die Konfiguration wird bei Gerätestart vom Gerät auf den Speicherchip geladen.

Konfiguration im laufenden Betrieb speichern

- ✓ Das Gerät ist mit dem Turck Safety Configurator verbunden.
- ✓ Der Speicherchip ist seit dem Start des Geräts gesteckt und enthält die aktuelle Konfiguration (identisch zu der Konfiguration im Turck Safety Configurator).
- Neue oder geänderte Konfiguration mit dem Turck Safety Configurator in das Gerät laden.

9.5.2 Konfiguration vom Speicherchip laden

- ✓ Ein Speicherchip mit einer gültigen Konfiguration ist vorhanden.
- ▶ Drehcodierschalter auf 900 (F_Reset) stellen.
- Spannungsreset durchführen.
 - ⇒ Das Gerät wird zurückgesetzt.
- ▶ Drehcodierschalter auf beliebige Adresse ungleich "9xx" einstellen.
- Speicherchip mit gültiger Konfiguration auf das Gerät stecken.
- Spannungsversorgung einschalten.
- ⇒ Die Konfiguration wird beim Gerätestart vom Speicherchip auf das Gerät geladen.

9.5.3 Speicherchip löschen (Erase Memory)

Der Speicherchip kann entweder über die Einstellung der Drehcodierschalter oder über den Turck Safety Configurator gelöscht werden.

Speicherchip über Drehcodierschalter-Einstellung (901) löschen

- Speicherchip ins Gerät stecken.
- ▶ Drehcodierschalter auf 901 (Erase Memory) stellen.
- ▶ Spannungsreset am Gerät durchführen.
- Der Inhalt des Speicherchips wird gelöscht. Der Vorgang ist abgeschlossen, wenn die ERR-LED aufhört zu blinken.

Speicherchip über Turck Safety Configurator löschen

► Inhalt des Speicherchips löschen über die Funktion Monitor-Einstellungen → Konfiguration löschen.

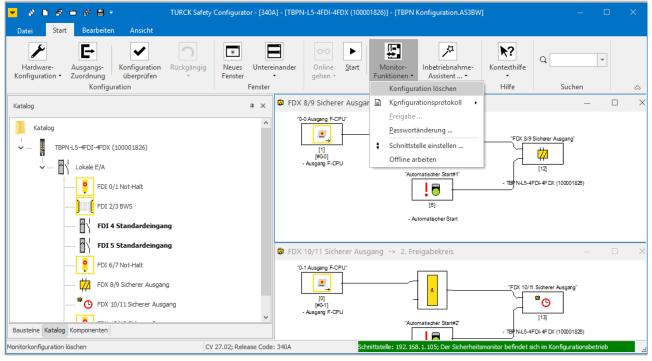


Abb. 80: Konfiguration löschen über Turck Safety Configurator

Die Konfiguration auf dem Speicherchip wird gelöscht. Der Vorgang ist abgeschlossen, wenn die ERR-LED aufhört zu blinken.

9.5.4 Konfigurationsübernahme und Modulverhalten

Konfiguration Geräte- intern	externer Speicher	Gerät/ Speicher	Modul- verhalten	Diagnose
ungültig/ keine	ungültig/ keine	-	Modulstart → Modul läuft nicht	Keine Konfiguration vor- handen, siehe "Memory und F-Config Sta- tus" [> 88]
ungültig/ keine	gültig	-	Modulstart → Modul läuft → Laden der Konfiguration vom Speicher in das Gerät	-
gültig	ungültig/ keine	-	Modulstart → Modul läuft → Laden der Konfiguration vom Gerät in den Speicher	
gültig	gültig	gleich	Modulstart → Modul läuft	-

		Gerät/ Speicher	Modul- verhalten	Diagnose			
gültig	gültig	ungleich	Modulstart → Modul läuft	Unterschiedliche Konfigurationen vorhanden, siehe "Memory und F-Config Status" [▶88]			
gültig	Speicher nicht gesteckt	-	Modulstart → Modul läuft nicht	Kein Speicherchip vorhanden, siehe "Memory und F-Config Status" [▶ 88]			
gültig	Speicher wird gezogen	-	lm laufenden Betrieb	Kein Speicherchip vorhanden, siehe "Memory und F-Config Status" [▶ 88]			
verändert zur Laufzeit	gültig	ungleich	Im laufenden Betrieb → Die neue Konfiguration wird geprüft. → Laden der Konfiguration vom Speicher in das Gerät	-			

10 Wieder in Betrieb nehmen nach Austausch oder Umbau

10.1 Gerät austauschen

GEFAHR

Montieren oder demontieren unter Spannung
Personenschäden durch unbeabsichtigten Maschinenanlauf

► Geräte nur im spannungsfreien Zustand montieren und demontieren.

10.1.1 Voraussetzungen für den Gerätetausch

Bei dem Austauschgerät muss es sich um ein identisches Gerät mit gleicher oder höherer Geräteversion handeln.

Beim Gerätetausch beachten:

- Das Austauschgerät muss genau so parametriert und konfiguriert werden wie das auszutauschende Gerät.
- ▶ Um eine vorhandene Konfiguration vom Konfigurationsspeicher des Ursprungsgerätes in das Austauschgerät zu übernehmen, vorgehen wie unter "Vorgehen bei Gerätetausch" beschrieben.

10.1.2 Vorgehen bei Gerätetausch

- ✓ Das auszutauschende Gerät muss sich im Rotary-Modus befinden [▶ 39].
- Auszutauschendes Gerät spannungsfrei schalten und Speicherchip mit gültiger Konfiguration entnehmen.
- ▶ Wichtig: Speicherchip nicht vertauschen.
- ► Auszutauschendes Gerät demontieren und Gerät gemäß Kapitel "Außer Betrieb nehmen" [▶ 96] außer Betrieb nehmen.
- ▶ Neues Gerät montieren wie im Kapitel "Montieren" [▶ 22] beschrieben.
- ► Gerät bei abgeschalteter Spannungsversorgung an die Versorgungsspannung anschließen [▶ 27].
- ▶ Wichtig: I/O-Ebene und Ethernet noch nicht anschließen, Speicherchip nicht stecken.
- ▶ Optional: Wenn das Austauschgerät nicht im Auslieferungszustand ist, Gerät auf Werkseinstellungen zurück setzen. Dazu wie folgt vorgehen: Drecodierschalter am Gerät auf 900 (Factory Reset) stellen [▶ 39], Versorgungsspannung einschalten, 1 min. warten und Gerät erneut spannungsfrei schalten.
- ▶ Bei einem Gerät im Auslieferungszustand ist kein Factory-Reset notwendig.
- ► Speicherchip mit der gültigen Konfiguration stecken und die IP-Adresse des Urprungsgeräts an den Drecodierschaltern einstellen [►39].
- Service-Fenster verschließen.
- Versorgungsspannung einschalten und 1 min. warten.
- Gerät erneut spannungsfrei schalten.
- ► Sensoren und Aktuatoren sowie Ethernet-Leitungen anschließen [▶ 27].
- Versorgungsspannung einschalten.
- ► Safety-Konfiguration überprüfen.
- ▶ Defekte und veraltete Geräte dürfen nicht wieder in Umlauf gebracht werden. Geräte entsorgen wie im Kapitel "Entsorgen" [▶ 96] beschrieben.

11 Instand halten

Das TBIP-L...-FDIO1-2IOL ist innerhalb der Einsatzdauer von 20 Jahren wartungsfrei.

Verwendete Kabel sowie angeschlossene Sensoren und Aktoren müssen innerhalb der Einsatzdauer des TBIP-L...-FDIO1-2IOL regelmäßig nach Herstellerangaben geprüft werden.

12 Außer Betrieb nehmen

Die Außerbetriebnahme des TBIP-L...-FDIO1-2IOL liegt in der Verantwortung des Anlagenherstellers. Der Betreiber muss darauf achten, dass das Gerät dem weiteren bestimmungsgemäßen Gebrauch zugeführt wird.

Außerdem müssen die Anforderungen an Lagerung und Transport gemäß der allgemeinen technischen Daten beachtet werden.

13 Entsorgen

Defekte und veraltete Geräte dürfen keinesfalls wieder in Umlauf gebracht werden. Geräte zur Prüfung und Entsorgung an Turck zurücksenden.

14 Technische Daten

14.1 Allgemeine technische Daten

Geräte	
TBIP-L5-FDIO1-2IOL	
■ ID	6814056
■ YoC	gemäß Gerätebedruckung
TBIP-L4-FDIO1-2IOL	
■ ID	100000360
■ YoC	gemäß Gerätebedruckung
TBIP-LL-FDIO1-2IOL	
■ ID	100027260
■ YoC	gemäß Gerätebedruckung
Versorgung	
Anschluss	
■ TBIP-L5-FDIO1-2IOL	7/8", 5-polig
■ TBIP-L4-FDIO1-2IOL	7/8", 4-polig
■ TBIP-LL-FDIO1-2IOL	M12, L-codiert, 5-polig
V1 (inkl. Elektronikversorgung)	24 VDC
V2	24 VDC, nur durchverbunden
Zulässiger Bereich	20,428,8 VDC
Trennspannungen	≥ 500 VAC
Schnittstellen	
Ethernet	2 × M12, 4-Pin, D-codiert
Serviceschnittstelle	Ethernet
Zeiten	
Interne Verzögerungszeit (zur Berechnung der Watchdog-Zeit)	10 ms
Reaktionszeiten	siehe Sicherheitskennwerte [▶ 38]
Allgemeine technische Daten	
Max. Leitungslänge	
Ethernet	100 m (pro Segment)
Sensor/Aktuator	30 m
Betriebs-/Lagertemperatur	-40 °C+70 °C (-40+158 °F)
Schutzart	IP67/IP69K Die Schutzart ist nur garantiert, wenn nichtverwendete Anschlüsse durch geeignete Verschraub- oder Blindkappen verschlossen werden.
Gehäusematerial	glasfaserverstärktes Polyamid (PA6-GF30)
Fenstermaterial	Lexan

Prüfungen	
Schwingungsprüfung	gemäß EN 60068-2-6, IEC 68-2-47, Beschleunigung bis 20 g
Kippfallen und Umstürzen	gemäß IEC 60068-2-31/IEC 60068-2-32
Schockprüfung	gemäß EN 60068-2-27
Elektromagnetische Verträglichkeit	gemäß EN 61131-2/EN 61326-3-1

14.2 Technische Daten – sichere Eingänge

Sichere Eingänge für OSSD	
Signalspannung Low-Pegel	EN 61131-2, Typ 1 (< 5 V; < 0,5 mA)
Signalspannung High-Pegel	EN 61131-2, Typ 1 (> 15 V; > 2 mA)
Max. OSSD-Versorgung pro Kanal	2 A
Max. tolerierte Testpulsbreite	1 ms
Min. Abstand zwischen zwei Testpulsen	12 ms bei 1 ms Testpulsbreite 8,5 ms bei 0,5 ms Testpulsbreite 7,5 ms bei 0,2 ms Testpulsbreite

Sichere Eingänge für potenzialfreie Kontakte	
Schleifenwiderstand	< 150 Ω
Max. Leitungskapazität	max. 1 μF bei 150 Ω , begrenzt durch Leitungskapazität
Testpuls typ.	0,6 ms
Testpuls maximal	0,8 ms
Abstand zwischen zwei Testpulsen, minimum	900 ms (bei statischen Eingängen)

14.3 Technische Daten – sichere Ausgänge

C:-h A"	
Sichere Ausgänge	
Passend für Eingänge nach EN 61131-2, Typ 1	
Ausgangspegel im Aus-Zustand	< 5 V
Ausgangsstrom im Aus-Zustand	< 1 mA
Testpuls, ohmsche Last, max.	0,5 ms
Testpuls, maximal	1,25 ms
Abstand zwischen zwei Testpulsen, typisch	500 ms
Abstand zwischen zwei Testpulsen, minimal	250 ms
Max. Ausgangsstrom	2 A (ohmsch)
Max. Summenstrom für Gerät	9 A
	Derating-Kurve:
	ΣΙ[Α] +
	9
	7
	,]
	0
	-40 0 40 70 [°C]
Max. Ausgangsstrom	2 A (DC-Last)
	Derating-Kurve:
	I[A] †
	2
	1.5
	1.5
	-40 0 40 70 [°C]

Der Anwender muss bauseits eine zusätzliche Überstromabsicherung vorsehen.

TBIP-L...-FDIO1-2IOL – Standard-DXP-Kanäle

15	Be	schreibung der DXP-Kanäle	
	15.1	Funktionen und Betriebsarten	102
	15.1.1	Standard-DXP-Kanäle versorgen	102
16	An	schließen	103
	16.1	Gerät in Zone 2 und Zone 22 anschließen	103
	16.2	Digitale Sensoren und Aktuatoren anschließen	103
17	Ko	nfigurieren	104
	17.1	Parameter	
18	Be	treiben	104
	18.1	LED-Anzeigen – DXP-Kanäle	104
	18.2	Prozess-Eingangsdaten	105
	18.2.1	Übersicht – Gesamtmodul	
	18.2.2	Prozess-Eingangsdaten – Standard-DXP-Kanäle	105
	18.3	Prozess-Ausgangsdaten	106
	18.3.1	Übersicht – Gesamtmodul	
	18.3.2	Prozess-Ausgangsdaten – Standard-DXP-Kanäle	106
19	Te	chnische Daten – DXP-Kanäle	107

15 Beschreibung der DXP-Kanäle

Das TBIP-L...-FDIO1-2IOL verfügt über zwei Standard-DXP-Kanäle.

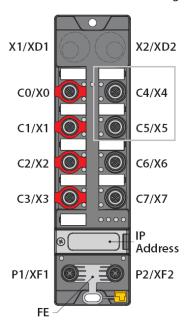


Abb. 81: Modulaufbau – DXP-Kanäle

TBEN-L4	TBEN-LL	Bedeutung
TBEN-L5		
X1	XD1	Power IN
X2	XD2	Power OUT
C0	X0	FDI0/1, sicherheitsgerichteter Eingang
C1	X1	FDI2/3, sicherheitsgerichteter Eingang
C2	X2	FDX4/5, sicherheitsgerichteter Eingang
C3	Х3	FDX6/7, sicherheitsgerichteter Eingang
C4	X4	DXP8/9, Standard-Ein-/Ausgänge (sicherheitsgerichtet über FSO0 abschaltbar)
C5	X5	DXP10/11, Standard-Ein-/Ausgänge (sicherheitsgerichtet über FSO0 abschaltbar)
C6	Х6	IOL, IO-Link-Port1
C7	Х7	IOL, IO-Link-Port2 (sicherheitsgerichtet über FSO1 abschaltbar)
IP Address	IP Address	Drehcodierschalter zur Adressierung (letztes Byte der IP-Adresse der sicheren Funktionseinheit)
P1	XF1	Ethernet 1
P2	XF2	Ethernet 2
FE	FE	Funktionserde

15.1 Funktionen und Betriebsarten

Die universellen digitalen DXP-Kanäle können je nach Applikationserfordernissen als Eingänge oder Ausgänge verwendet werden. Insgesamt lassen sich bis zu vier 3-Draht-PNP-Sensoren bzw. vier PNP-DC-Aktuatoren mit einem maximalen Gesamt-Ausgangsstrom von 2 A anschließen.

15.1.1 Standard-DXP-Kanäle versorgen

Die beiden DXP-Kanäle werden über den internen sicheren Ausgang FSO0 versorgt. Die Versorgung der DXP-Kanäle über FSO0 ermöglicht das sicherheitsgerichtete Abschalten der Steckplätze C4 und C5 bzw. X4 und X5.

HINWEIS

Die Versorgung der DXP-Kanäle über FSOO erfolgt über eine gepulste Spannung. Die gepulste Spannung kann die Funktion angeschlossener Sensoren beeinflussen. Um dies zu verhindern, kann der Testpuls im Turck Safety Configurator über die Experteneinstellungen am Ausgang FSOO verändert oder ganz ausgeschaltet werden.

16 Anschließen

WARNUNG

Eindringen von Flüssigkeiten oder Fremdkörpern durch undichte Anschlüsse Lebensgefahr durch Ausfall der Sicherheitsfunktion

- ▶ M12-Steckverbinder mit einem Anzugsdrehmoment von 0,6 Nm anziehen.
- ▶ 7/8"-Steckverbinder mit einem Anzugsdrehmoment von 0,8 Nm anziehen.
- ▶ Nur Zubehör verwenden, das die Schutzart IP65/IP67/IP69K gewährleistet.
- ▶ Nicht verwendete M12-Steckverbinder mit den mitgelieferten Verschraubkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.
- ► Geeignete 7/8"-Verschlusskappen (z. B. Typ RKMV-CCC) verwenden. Die Verschlusskappen sind nicht im Lieferumfang enthalten.

16.1 Gerät in Zone 2 und Zone 22 anschließen

GEFAHR

Explosionsfähige Atmosphäre
Explosion durch zündfähige Funken
Bei Einsatz in Zone 2 und Zone 22:

- ▶ Stromkreise nur trennen und verbinden, wenn keine Spannung anliegt.
- ▶ Nur Anschlussleitungen verwenden, die für den Einsatz im explosionsgefährdeten Bereich zugelassen sind.
- ► Alle Steckverbinder verwenden oder durch Blindstopfen verschließen.
- ► Auflagen durch die Ex-Zulassung beachten.

16.2 Digitale Sensoren und Aktuatoren anschließen

Zum Anschluss von digitalen Standard-Sensoren und Aktuatoren verfügt das Gerät über zwei M12-Buchsen. Das max. Anzugsdrehmoment beträgt 0,6 Nm.

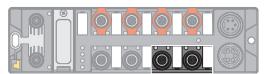


Abb. 82: M12-Steckverbinder, DXP-Kanäle C4...C5 bzw. X4...X5

▶ Digitale Sensoren und Aktuatoren gemäß Pinbelegung an das Gerät anschließen.

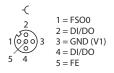


Abb. 83: Pinbelegung C4...C5 bzw. X4...X5

17 Konfigurieren

17.1 Parameter

Die Default-Werte sind **fett** dargestellt.

Parametername	Wert	Bedeutung	Beschreibung
Manueller Reset des Ausgangs nach Überstrom	0	nein	Der Ausgang schaltet sich nach Überstrom automatisch wieder ein.
(SRO)	1	ja	Der Ausgang schaltet sich nach Überstrom erst nach Zurücknehmen und erneutem Wiedereinschalten wieder ein.
Ausgang aktivieren	0	nein	
(EN DO)	1	ja	

18 Betreiben

18.1 LED-Anzeigen – DXP-Kanäle

LED DXP 811 (C4C5 bzw. X4 X5)	Bedeutung (Eingang)	Bedeutung (Ausgang)
aus	Eingang inaktiv	Ausgang inaktiv
grün	Eingang aktiv	Ausgang aktiv
grün/blinkt rot	Eingang aktiv, Überlast der Versorgung	-
blinkt rot	Eingang inaktiv und Überlast der Versorgung	Überlast der Versorgung
rot	-	Ausgang aktiv mit Überlast oder Kurz- schluss

18.2 Prozess-Eingangsdaten

18.2.1 Übersicht – Gesamtmodul

Die Prozess-Eingangsdaten des Geräts sind wie folgt aufgebaut:

	Wort-Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status- word	n		Siehe [▶84]														
Basic	n + 1 n + 2	S	Statusmeldungen für standard-I/O-Kanäle [▶ 105] und IO-Link-Master-Kanäle [▶ 124]														
Feldbus- bits	n + 3		Status der sicheren Einheit [▶ 87]														
Safety- Status	n + 4 n + 10		Prozesseingangsdaten sichere I/O-Kanäle [▶ 86]														
IO-Link- Kanäle	n + 11 n + 42		IO-Link-Prozess-Eingangsdaten [▶ 124]														
Diagnosen	n + 43	-	-	-	-	-	-	-	-		Üb	erstro	mdia	gnose	n [▶ 1	05]	
	n + 44			DXP-[Diagno	osen [▶ 105]		-	-	-	-	-	-	-	-
	n + 45 n + 46		IO-Link-Port-Diagnosen [▶ 124]														
IO-Link- Events	n + 46 n + 78		IO-Link-Events [▶ 124]														
Moduls- Status	n + 79							Мо	dulsta	tus [84]						

18.2.2 Prozess-Eingangsdaten – Standard-DXP-Kanäle

	Wort-	Bit	Bit	Bit	Bit	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Nr.	15	14	13	12												
Basic	n + 1	-	-	-	-	DXP11	DXP10	DXP9	DXP8	-	-	-	-	-	-	-	-
						C5/X5	C5/X5	C4/X4	C4/X4								
						P2	P4	P2	P4								
Diagnose	n + 44	-	-	-	-	SCO11	SCO10	SCO9	SCO8	-	-	-	-	-	-	-	-

Bedeutung der Prozessdatenbits

Bit	Wert	Bedeutung	
DXP	0	Eingang inaktiv	C/X = Steckverbinder
C/XP	1	Eingang aktiv	C0C7 (TBEN-L4 bzw. TBEN-L5) X0X7 (TBEN-LL) P = Pin
SCO	0	-	
	1	Überstrom am Ausgang	

18.3 Prozess-Ausgangsdaten

18.3.1 Übersicht – Gesamtmodul

Die Prozess-Ausgangsdaten des Geräts sind wie folgt aufgebaut:

	Wort-Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Basic	n + 1	Con	trol: D	XP-Ka	näle												
Feldbusbits	n + 2	Stati	tatus der sicheren Einheit [▶ 91]														
Safety- Status	n + 3	Unlo	nlock Safe Unit [▶ 90]														
IO-Link- Kanäle	n + 4 n + 5	IO-Li	ink-Pr	ozess	-Ausg	gangs	daten	[▶ 12	[6]								

18.3.2 Prozess-Ausgangsdaten – Standard-DXP-Kanäle

	Wort-Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Basic	n + 1	-	-	-	-	DXP11	DXP10	DXP9	DXP8	-	-	-	-	-	-	-	-
						C5/X5	C5/X5	C4/X4	C4/X4								
						P2	P4	P2	P4								

Bedeutung der Prozessdatenbits

Bit	Wert	Bedeutung	
DXP C/XP	0	Ausgang inaktiv Ausgang aktiv	C/X = Steckverbinder C0C7 (TBEN-L4 bzw. TBEN-L5) X0X7 (TBEN-LL) P = Pin

19 Technische Daten – DXP-Kanäle

Der erste Abschnitt der Betriebsanleitung enthält die allgemeinen technischen Daten des Geräts [> 97].

Technische Daten	
Digitale Eingänge	
Kanalanzahl	4
Eingangstyp	PNP
Schaltschwelle	EN 61131-2 Typ 3, PNP
Betriebsstrom	< 100 mA
Signalspannung Low-Pegel	< 5 V
Signalspannung High-Pegel	> 11 V
Signalsstrom Low-Pegel	< 1,5 mA
Signalsstrom High-Pegel	> 2 mA
Eingangsverzögerung	0,2 ms
Eingangsfrequenz	400 Hz
Sensorversorgung	 C4/X4, C5/X5: FSO0 max. 2 A; 500 mA pro Eingang C6/X6: VAUX1 max. 2 A C7/X7: FSO1 max. 2 A
	Derating [▶ 99]
Potenzialtrennung	galvanische Trennung zu P1/P2 spannungsfest bis 500 VAC
Digitale Ausgänge	
Kanalanzahl	4, DC-Aktuatoren
Ausgangstyp	PNP
Ausgangsspannung	24 VDC
Lastart	ohmsch
Ausgangsstrom pro Kanal	0,5 A, kurzschlussfest, max. 2 A (ohmsch) 1 A (induktiv) über alle Standard-Ausgänge
Gleichzeitigkeitsfaktor	1 für Gesamtmodul Gesamtstrom max. 2 A an FSO0
Aktuatorversorgung	 C4/X4, C5/X5: FSO0 max. 2 A, 500 mA pro Ausgang C6/X6: VAUX1 max. 2 A C7/X7: FSO1 max. 2 A
Potenzialtrennung	Derating [▶ 99] galvanische Trennung zu P1/P2 spannungsfest bis 500 VAC

TBIP-L...-FDIO1-2IOL – Standard-IO-Link-Kanäle

20	De	schielbung der 10-Link-Kanale	109
	20.1	Funktionen und Betriebsarten	110
	20.1.1	Versorgung der IO-Link-Ports	110
	20.1.2	Versorgung angeschlossener IO-Link-Geräte (Class A und Class B)	110
21	An	schließen	111
	21.1	Gerät in Zone 2 und Zone 22 anschließen	111
	21.2	IO-Link-Geräte anschließen	112
22	ln l	Betrieb nehmen	
	22.1	IO-Link-Device mit IO-Link V1.0 in Betrieb nehmen	114
	22.2	IO-Link-Device mit IO-Link V1.1 in Betrieb nehmen	
23	Ko	nfigurieren	117
	23.1	Parameter	117
	23.1.1	= = = = = = = = = = = = = = = = =	
24	Be	treiben	122
	24.1	LED-Anzeigen – IO-Link-Kanäle	122
	24.2	Prozess-Eingangsdaten	123
	24.2.1	Übersicht – Gesamtmodul	123
	24.2.2	Prozess-Eingangsdaten – IO-Link-Kanäle	
	24.3	Prozess-Ausgangsdaten	126
	24.3.1	Übersicht – Gesamtmodul	126
	24.3.2	Prozess-Ausgangsdaten – IO-Link-Kanäle	126
	24.4	Software-Diagnosemeldungen	127
	24.5	IO-Link-Funktionen für die azyklische Kommunikation	
	24.5.1	Port-Funktionen für Port 0 (IO-Link-Master)	130
	24.6	Datenhaltungsmodus nutzen	135
	24.6.1	Parameter Datenhaltungsmodus = aktiviert	136
	24.6.2	Parameter Datenhaltungsmodus = einlesen	137
	24.6.3	Parameter Datenhaltungsmodus = überschreiben	137
	24.6.4	Parameter Datenhaltungsmodus = deaktiviert, löschen	138
25	Stö	brungen beseitigen	139
	25.1	Parametrierfehler beheben	139
26	Te	chnische Daten – IO-Link-Kanäle	140

20 Beschreibung der IO-Link-Kanäle

Das TBIP-L...-FDIO1-2IOL stellt an den Steckverbindern C6 und C7 bzw. X6 und X7 zwei IO-Link-Ports zur Verfügung.

- 2-kanaliger IO-Link Master nach Spezifikation V1.1
- zwei universelle digitale Kanäle, PNP, Kanaldiagnose, 0,5 A

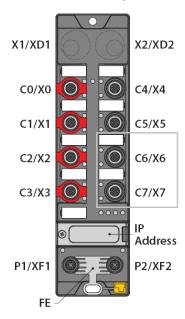


Abb. 84: Modulaufbau - IO-Link-Kanäle

TBEN-L4	TBEN-LL	Bedeutung
TBEN-L5		
X1	XD1	Power IN
X2	XD2	Power OUT
C0	X0	FDIO/1, sicherheitsgerichteter Eingang
C1	X1	FDI2/3, sicherheitsgerichteter Eingang
C2	X2	FDX4/5, sicherheitsgerichteter Ein-/Ausgang
C3	Х3	FDX6/7, sicherheitsgerichteter Ein-/Ausgang
C4	X4	DXP8/9, Standard-Ein-/Ausgänge
		(sicherheitsgerichtet über FSO0 abschaltbar)
C5	X5	DXP10/11, Standard-Ein-/Ausgänge
		(sicherheitsgerichtet über FSO0 abschaltbar)
C6	Х6	IOL, IO-Link-Port1
C7	Х7	IOL, IO-Link-Port2 (sicherheitsgerichtet über FSO1 abschaltbar)
IP Address	IP Address	Drehcodierschalter zur Adressierung (letztes Byte der IP-Adresse der sicheren Funktionseinheit)
P1	XF1	Ethernet 1
P2	XF2	Ethernet 2
FE	FE	Funktionserde

20.1 Funktionen und Betriebsarten

Das TBIP-L...-FDIO1-2IOL verfügt über zwei Class-A-IO-Link-Ports an den Steckplätzen C6 und C7 bzw. X6 und X7.

Die IO-Link-Kanäle an Pin 4 der Steckplätze können unabhängig voneinander parametriert und wahlweise im IO-Link-Modus bzw. im SIO-Modus (DI) (Standard-I/O-Modus) betrieben werden.

Die universellen digitalen Kanäle an Pin 2 der Steckplätze C6 und C7 bzw. X6 und X7 sind als DXP-Kanäle ausgelegt und als Ein- oder Ausgang frei nutzbar.

20.1.1 Versorgung der IO-Link-Ports

Der IO-Link-Port IOL1 an C6 bzw. X6 wird aus V1 versorgt. Der IO-Link-Port IOL2 an C7 bzw. X7 wird über den internen sicheren Ausgang FSO1 versorgt.

IO-Link Port	Steckverbinder	Versorgung
IOL1	C6/X6	VAUX1
IOL2	C7/X7	FSO1 (getaktet durch Testpulse)

HINWEIS

Die Versorgung des IO-Link-Kanals IOL2 über FSO1 erfolgt über eine gepulste Spannung. Die gepulste Spannung kann die Funktion angeschlossener IO-Link-Devices beeinflussen. Um dies zu verhindern, kann der Testpuls im Turck Safety Configurator über die Experteneinstellungen am Ausgang FSO1 verändert oder ganz ausgeschaltet werden.

20.1.2 Versorgung angeschlossener IO-Link-Geräte (Class A und Class B)

Die IO-Link-Ports stellen an Pin 1 und 3 eine Class-A-Versorgung und an Pin 2 und Pin 5 eine Class-B-Versorgung für die angeschlossenen IO-Link-Geräte zur Verfügung. Die beiden Versorgungsspannungen sind nicht galvanisch getrennt.

Um die Class-B-Versorgung zu aktivieren, muss der jeweilige Ausgang (DXP13 bzw. DXP15) in den Prozessausgangsdaten gesetzt werden [126].

21 Anschließen

WARNUNG

Eindringen von Flüssigkeiten oder Fremdkörpern durch undichte Anschlüsse Lebensgefahr durch Ausfall der Sicherheitsfunktion

- ▶ M12-Steckverbinder mit einem Anzugsdrehmoment von 0,6 Nm anziehen.
- ▶ 7/8"-Steckverbinder mit einem Anzugsdrehmoment von 0,8 Nm anziehen.
- ▶ Nur Zubehör verwenden, das die Schutzart IP65/IP67/IP69K gewährleistet.
- ▶ Nicht verwendete M12-Steckverbinder mit den mitgelieferten Verschraubkappen verschließen. Das Anzugsdrehmoment für die Verschraubkappen beträgt 0,5 Nm.
- ► Geeignete 7/8"-Verschlusskappen (z. B. Typ RKMV-CCC) verwenden. Die Verschlusskappen sind nicht im Lieferumfang enthalten.

21.1 Gerät in Zone 2 und Zone 22 anschließen

GEFAHR

Explosionsfähige Atmosphäre
Explosion durch zündfähige Funken
Bei Einsatz in Zone 2 und Zone 22:

- ▶ Stromkreise nur trennen und verbinden, wenn keine Spannung anliegt.
- Nur Anschlussleitungen verwenden, die für den Einsatz im explosionsgefährdeten Bereich zugelassen sind.
- ▶ Alle Steckverbinder verwenden oder durch Blindstopfen verschließen.
- ► Auflagen durch die Ex-Zulassung beachten.

21.2 IO-Link-Geräte anschließen

Zum Anschluss von IO-Link-Devices verfügt das Gerät über zwei M12-Buchsen. Das max. Anzugsdrehmoment beträgt 0,6 Nm.

Abb. 85: M12-Steckverbinder, IO-Link-Kanal IOL1, C6 bzw. X6

▶ IO-Link-Devices gemäß Pinbelegung an das Gerät anschließen.

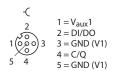


Abb. 86: Pinbelegung IO-Link-Port IOL1 (C6 bzw. X6)

Pin	Signal	Bedeutung
1	$V_{AUX}1$	Class A Versorgung
2	DI/DO	Digitaleingang bzw. Digitalausgang/Class B-Versorgung
3	GND (V1)	Ground V1
4	C/Q	IO-Link
5	GND (V1)	Funktionserde



Abb. 87: M12-Steckverbinder, IO-Link-Kanal IOL2, C7 bzw. X7

▶ IO-Link-Devices gemäß Pinbelegung an das Gerät anschließen.

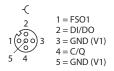


Abb. 88: Pinbelegung IO-Link-Port IOL2 (C7 bzw. X7)

Pin	Signal	Bedeutung
1	FSO1	Class A Versorgung (sicher abschaltbar)
2	DI/DO	Digitaleingang bzw. Digitalausgang/Class B-Versorgung
3	GND (V1)	Ground V1
4	C/Q	IO-Link
5	GND (V1)	Funktionserde

ACHTUNG

Falsche Versorgung von IO-Link-Devices (Class A)

Schäden an der Elektronik

► IO-Link-Devices (Class A) ausschließlich mit der an den Anschlusspunkten bereitgestellten Spannung V_{AUX}1 versorgen.

Induktive Koppler (Class A) anschließen

Der IO-Link-Port IOL2 an C7 bzw. X7 wird über den internen sicheren Ausgang FSO1 versorgt. Induktive Koppler (Class A) können aufgrund der Testpulse am sicheren Ausgang nicht an Port C7 bzw. X7 angeschlossen werden.

- Induktive Koppler nur an Port C6 bzw. X6 anschließen.
- Parameter "Zykluszeit" auf einen Wert von mindestens 10,4 ms einstellen.

22 In Betrieb nehmen

22.1 IO-Link-Device mit IO-Link V1.0 in Betrieb nehmen

IO-Link-Devices nach IO-Link-Spezifikation V1.0 unterstützen keine Datenhaltung. Wenn ein IO-Link-V1.0-Device verwendet wird, muss die Datenhaltung am IO-Link-Port deaktiviert werden.

- **Datenhaltungsmodus** am Port auf **deaktiviert**, **löschen** setzen.
- Parametrierung in das Gerät laden.
- ► IO-Link-V1.0-Device anschließen.
- ⇒ Die LED IOL am IO-Link-Port leuchtet grün, aktive IO-Link-Kommunikation.

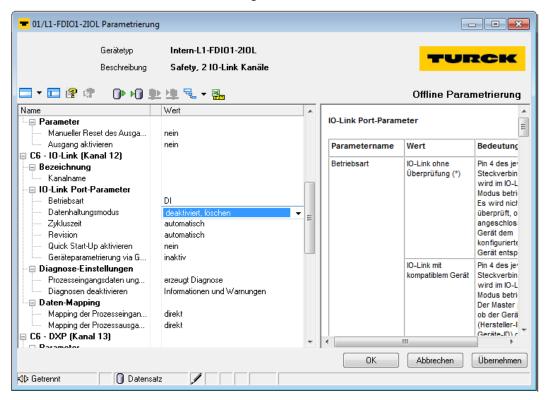


Abb. 89: Datenhaltungsmodus über DTM deaktivieren bzw. löschen (Beispiel)

22.2 IO-Link-Device mit IO-Link V1.1 in Betrieb nehmen

Wenn ein anderer Device-Typ an einen zuvor bereits genutzten IO-Link-Port angeschlossen wird, sollte der Datenhaltungsspeicher des Masters zunächst gelöscht werden.

Der Datenhaltungsspeicher des Masters kann auf zwei Arten gelöscht werden:

- IO-Link-Master auf Werkseinstellungen zurücksetzen.
- Datenhaltungsspeicher über den Parameter Datenhaltungsmodus löschen.

IO-Link-Master über DTM auf Werkseinstellungen zurücksetzen

- Aus dem Drop-down-Menü Werkseinstellungen die Option auf Werkseinstellungen zurücksetzen auswählen.
- ▶ Parameteränderung in das Gerät laden.
- ⇒ Das Gerät wird automatisch vom DTM zurückgesetzt.

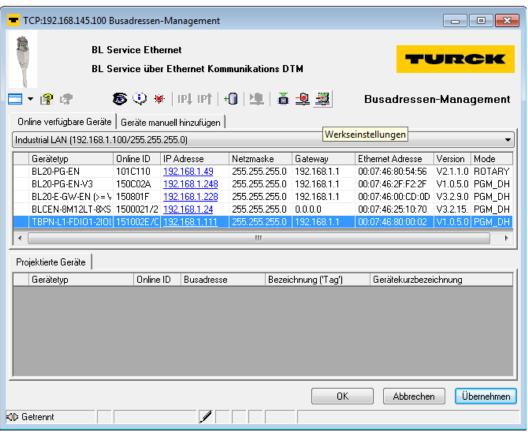


Abb. 90: Gerät über DTM auf Werkseinstellungen zurücksetzen (Beispiel)

- ► IO-Link-V1.1-Device anschließen.
- ⇒ Die LED IOL am IO-Link-Port leuchtet grün, aktive IO-Link-Kommunikation.

Datenhaltungsspeicher über Parameter löschen

- Parameter Datenhaltungsmodus einstellen auf deaktiviert, löschen.
- ▶ Parameteränderung in das Gerät laden.
- ▶ Wenn erforderlich, Datenhaltung erneut aktivieren.
- ▶ Parameteränderung in das Gerät laden.
- ► IO-Link-V1.1-Device anschließen.
- ⇒ Die LED IOL am IO-Link-Port leuchtet grün, aktive IO-Link-Kommunikation.

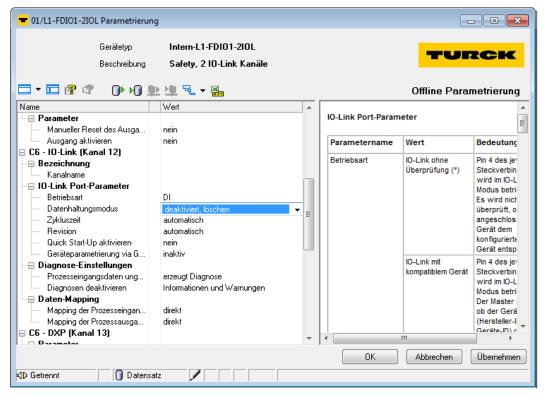


Abb. 91: Datenhaltungsmodus über DTM deaktivieren bzw. löschen (Beispiel)

23 Konfigurieren

23.1 Parameter

	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0							
					Ва	sic										
	0	-	-	-	-	-	-	-	-							
	1	DXP15_ SRO	-	DXP13_ SRO	-	-	-	-	-							
	2	-	-	-	-	-	-	-	-							
	3	DXP15_ ENDO	-	DXP14_ ENDO	-	-	-	-	-							
					10-1	Link										
IOL1	4	GSD	Quick Start-Up		altungs- dus	Betriebsart										
	5		Zykluszeit													
	6		gsdaten- ping		gsdaten- ping		nosen ivieren	PZDE ungültig	Revision							
	711	-	-	-	-	-	-	-	-							
	12				Herstelle	Hersteller-ID LSB										
	13				Herstelle	er-ID MSB										
	14				Geräte	-ID LSB										
	15				Gerä	te-ID										
	16				Gerä	te-ID										
	17				Geräte-	-ID MSB										
	18	-	-	-	-	-	-	-	-							
	19	-	-	-	-	-	-	-	-							
IOL2	2035		I	Belegung	analog zu	ı IOL1 (Byt	te 4 bis 19	9)								

Bedeutung der Parameterbits

Die Default-Werte sind **fett** dargestellt.

D			De desertes se							
Parametername	Wert Dez.	Hex.	Bedeutung	Beschreibung						
Betriebsart	0	0x00	IO-Link ohne Überprüfung	Pin 4 wird im IO-Link-Modus betrieben. Der Master prüft nicht, ob das angeschlossene IO-Link- Device dem konfigurierten Device entspricht.						
	1	0x01	IO-Link mit familien- kompatiblem Gerät	Pin 4 wird im IO-Link-Modus betrieben. Der Master prüft, ob die Vendor-ID und das MSB der Device-ID (hierdurch wird die Produktfamilie definiert) des angeschlossenen Device mit denen des konfigurierten übereinstimmen. Scheitert die Prüfung, wird zwar eine IO- Link-Kommunikation aufgebaut, aber es findet kein Pro- zessdatenaustausch statt. Das Device bleibt im sicheren Zustand (Pre-Operate). Parameter und Diagnosedaten können gelesen bzw. ge- schrieben werden.						
	2	0x02	IO-Link mit kompatiblem Gerät	Pin 4 wird im IO-Link-Modus betrieben. Der Master prüft, ob die Vendor-ID und die Device-ID des angeschlossenen Device mit den IDs des konfigurierten übereinstimmen. Stimmt die Vendor-ID überein, die Device-ID jedoch nicht, versucht der Master, die Device-ID in das angeschlossene Device zu schreiben. Gelingt das Schreiben der Device-ID, ist das angeschlossene Device kompatibel und ein Prozessdatenaustausch kann stattfinden. Gelingt das Schreiben der Device-ID nicht, findet kein Prozessdatenaustausch statt. Das Device bleibt im sicheren Zustand (Pre- Operate). Parameter und Diagnosedaten können gelesen bzw. geschrieben werden.						
	3	0x03	IO-Link mit identischem Gerät	Pin 4 wird im IO-Link-Modus betrieben. Der Master prüft, ob der Device-Typ (Vendor-ID und Device-ID) und die Seriennummer des angeschlossenen Device mit den Angaben des konfigurierten Device übereinstimmen. Scheitert die Prüfung, wird zwar eine IO-Link-Kommunikation aufgebaut, aber es findet kein Prozessdatenaustausch statt. Das Device bleibt im sicheren Zustand (Pre-Operate). Parameter und Diagnosedaten können gelesen bzw. geschrieben werden.						
	4	0x04	DI (mit Parameterzugriff)	Pin 4 wird grundsätzlich als einfacher digitaler Eingang betrieben. Der azyklische Parameterzugriff von der SPS oder vom DTM ist möglich. Der IO-Link-Master startet den Port im IO-Link-Modus, parametriert das Device und setzt den Port dann zurück in den SIO-Modus (DI). Der Port bleibt so lange im SIO-Modus (DI), bis eine erneute IO-Link-Anfrage von der übergeordneten Steuerung erfolgt. Datenhaltung wird nicht unterstützt. Angeschlossene Devices müssen den SIO-Modus (DI) unterstützen. Bei einem Parameterzugriff wird die IO-Link-Kommunikation am Port gestartet. Schaltsignale werden dabei unterbrochen.						

Parametername	Wert Dez.	Hex.	Bedeutung	Beschreibung								
	8	0x08	DI	Pin 4 wird als einfacher digitaler Eingang betrieben. Datenhaltung wird nicht unterstützt.								
Datenhaltungs- modus	schlos Ist die (DS_E	ssenen Synch ERR). In Optior schen. nk-Devi	Device im Master). ronisation nicht mögli diesem Fall muss der I n "11 = deaktiviert, löse ces mit IO-Link V1.0 ur	en der IO-Link-Devices (Sicherung der Parameter des ange- ich, wird dies durch eine Diagnosemeldung angezeigt Datenspeicher des Masters gelöscht werden: chen" wählen, um den Datenspeicher des Masters zu lö- nterstützen keine Datenhaltung. Bei der Verwendung von								
	IO-Link-Devices mit IO-Link V1.0: • Option "11 = deaktiviert, löschen" wählen, um die Datenhaltung zu deaktivieren.											
	0		aktiviert	Synchronisation der Parameterdaten aktiviert. Als Referenz dienen immer die aktuellen Parameterdaten (Master oder Device).								
	1	0x01	überschreiben	Synchronisation der Parameterdaten aktiviert, als Referenz dienen die Daten im Master.								
	2	0x02	einlesen	Synchronisation der Parameterdaten aktiviert, als Referenz dienen die Daten im angeschlossenen IO-Link-Device.								
	3	0x03	deaktiviert, löschen	Synchronisation der Parameterdaten deaktiviert. Der im Master abgespeicherte Datensatz wird gelöscht.								
Quick Start-Up aktivieren	verkü	rzt wer	_	Verkzeugwechsel) kann die Anlaufzeit für IO-Link-Devices er IO-Link-Spezifikation definierte Erkennungszeit (TSD =								
	0	0x00	nein	Die Anlaufzeit liegt im definierten Bereich (0,5 s). Alle IO- Link-Devices gemäß Spezifikation können betrieben wer- den.								
	1	0x01	ja	Die Anlaufzeit wird auf ca. 100 ms reduziert. Diese wird nicht von allen IO-Link-Devices unterstützt. Ggf. ist zu prü- fen, ob das verwendete IO-Link-Device in diesem Modus anläuft.								
Geräteparame-	0	0x00	inaktiv	Port ist generisch oder wird gar nicht parametriert.								
trierung via GSD (GSD)	1	0x01	aktiv	Der Port wird im PROFINET mit einem spezifischen Gerätetyp aus der GSDML-Datei parametriert.								
Zykluszeit	0	0x00	automatisch	Die kleinstmögliche vom Device unterstützte Zykluszeit wird gewählt.								
	16 191	0x10 0xBF	1,6132,8 ms	Einstellbar in Schritten von 0,8 bzw. 1,6 ms								
	255	0xFF	automatisch, kompatibel	Kompatibilitätsmodus Der Modus behebt mögliche Kommunikationsprobleme mit Sensoren der SGB-Familie der Firma IFM.								
Revision	0	0x00	automatisch	Der Master bestimmt die IO-Link-Revision automatisch.								
	1	0x01	V 1.0	IO-Link-Revision V 1.0 wird eingestellt.								
Prozess-Eingangs- daten ungültig	0	0x00	erzeugt Diagnose	Sind die Prozessdaten ungültig, wird eine entsprechende Diagnose erzeugt.								
(PZDE ungültig)	1	0x01	erzeugt keine Diagnose	Ungültige Prozessdaten erzeugen keine Diagnose.								

Parametername	Wert		Bedeutung	Beschreibung							
	Dez.	Hex.	_	_							
Diagnosen deaktivieren		ng wer		D-Link-Events vom Master an den Feldbus. Je nach Parame- ihrer Priorität vom Master an den Feldbus weitergeleitet							
	0	0x00	nein	Der Master leitet alle IO-Link-Events an den Feldbus weite							
	1	0x01	Informationen	Der Master leitet alle IO-Link-Events außer IO-Link-Informationen (Notifications) an den Feldbus weiter.							
	2	0x02	Informationen und Warnungen	Der Master leitet alle IO-Link-Events außer IO-Link-Informationen und Warnungen (Notifications und Warnings) an den Feldbus weiter.							
	3	0x03	ja	Der Master leitet keine IO-Link-Events an den Feldbus weiter.							
Eingangsdaten- Mapping	könn	en in Al		appings für den verwendeten Feldbus: Die IO-Link-Daten vendeten Feldbus gedreht werden, um ein optimiertes Da- zu erreichen.							
	0	0x00	direkt	Die Prozessdaten werden nicht gedreht. z. B.: 0x0123 4567 89AB CDEF							
	1	0x01	16 Bit drehen	Die Bytes pro Wort werden gedreht. z. B.: 0x2301 6745 AB89 EFCD							
	2	0x02	32 Bit drehen	Die Bytes pro Doppelwort werden gedreht. z. B.: 0x6745 2301 EFCD AB89							
	3	0x03	alle drehen	Alle Bytes werden gedreht. z. B.: 0xEFCD AB89 6745 2301							
Ausgangsdaten- Mapping	siehe	Eingar	ngsdaten-Mapping								
Hersteller-ID	siehe Eingangsdaten-Mapping 065535 Angabe der Hersteller-ID für die Port-Konfigurations- prüfung										
Geräte-ID		677721 k00FFFF	-	Angabe der Geräte-ID für die Port-Konfigurationsprüfung, 24-Bit-Wert							

Werte für den Parameter "Zykluszeit" in ms

Zeit	Wert	Zeit	Wert	Zeit	Wert	Zeit	Wert	Zeit	Wert	Zeit	Wert
auto	0x00	16	0x58	31,2	0x7E	60,8	0x92	91,2	0xA5	121,6	0xB8
1,6	0x10	16,8	0x5A	32	0x80	62,4	0x93	92,8	0xA6	123,2	0xB9
2,4	0x18	17,6	0x5C	33,6	0x81	64	0x94	94,4	0xA7	124,8	0xBA
3,2	0x20	18,4	0x5E	35,2	0x82	65,6	0x95	96	0xA8	126,4	0xBB
4	0x28	19,2	0x60	36,8	0x83	67,1	0x96	97,6	0xA9	128	0xBC
4,8	0x30	20	0x62	38,4	0x84	68,8	0x97	99,2	0xAA	129,6	0xBD
5,6	0x38	20,8	0x67	40	0x85	70,4	0x98	100,8	0xAB	131,2	0xBE
6,4	0x40	21,6	0x66	41,6	0x86	72	0x99	102,4	0xAC	132,8	0xBF
7,2	0x42	22,4	0x68	43,2	0x87	73,6	0x9A	104	0xAD	reservi	ert
8	0x44	23,2	0x6A	44,8	0x88	75,2	0x9B	105,6	0xAE		
8,8	0x46	24,0	0x6C	46,4	0x89	76,8	0x9C	107,2	0xAF		
9,6	0x48	24,8	0x6E	48	0x8A	78,4	0x9D	108,8	0xB0		
10,4	0x4A	25,6	0x70	49,6	0x8B	80	0x9E	110,4	0xB1		
11,2	0x4C	26,4	0x72	51,2	0x8C	81,6	0x9F	112	0xB2		
12,0	0x4E	27,2	0x74	52,8	0x8D	83,2	0xA0	113,6	0xB3		
12,8	0x50	28	0x76	54,4	0x8E	84,8	0xA1	115,2	0xB4		
13,6	0x52	28,8	0x78	56	0x8F	86,4	0xA2	116,8	0xB5		
14,4	0x54	29,6	0x7A	57,6	0x90	88	0xA3	118,4	0xB6		
15,2	1x56	30,4	0x7C	59,2	0x91	89,6	0xA4	120	0xB7	auto., komp.	0xFF

23.1.1 Prozessdatenmapping anpassen

Das Mapping der Prozessdaten kann über die Parametrierung des IO-Link-Master-Moduls applikationsspezifisch angepasst werden.

Je nach verwendetem Feldbus kann es notwendig sein, Prozessdaten wortweise, doppelwortweise oder im Ganzen zu drehen, um sie der Datenstruktur innerhalb der Steuerung anzupassen. Das Mapping der Prozessdaten wird Kanal für Kanal über die Parameter **Mapping Prozess-Eingangsdaten** und **Mapping Prozess-Ausgangsdaten** bestimmt.

24 Betreiben

24.1 LED-Anzeigen – IO-Link-Kanäle

LED IOL, LED 12 (C6/X6), LED14 (C7/X7)	Bedeutung (Kanal im IO-Link-Modus	s)								
aus	Port inaktiv, keine IO-Link-Kommu	nikation, Diagnosen deaktiviert								
blinkt grün	IO-Link-Kommunikation, Prozessda	D-Link-Kommunikation, Prozessdaten gültig								
blinkt rot	IO-Link-Kommunikation und Modu	-Link-Kommunikation und Modulfehler, Prozessdaten ungültig								
rot		-Link-Versorgung fehlerfrei, keine IO-Link-Kommunikation und bzw. ler Modulfehler, Prozessdaten ungültig								
LED IOL, LED 12 (C6/X6), LED14 (C7/X7)	Bedeutung (Kanal im SIO-Modus (DI	Bedeutung (Kanal im SIO-Modus (DI))								
aus	kein Eingangssignal									
grün	digitales Eingangssignal liegt an									
LED DXP, LED 13 (C6/ X6), LED15 (C7/X7)	Bedeutung (Eingang)	Bedeutung (Ausgang)								
aus	Eingang inaktiv	Ausgang inaktiv								
grün	Eingang aktiv	Ausgang aktiv								
rot	-	Ausgang aktiv mit Überlast oder Kurzschluss								

24.2 Prozess-Eingangsdaten

24.2.1 Übersicht – Gesamtmodul

Die Prozess-Eingangsdaten des Geräts sind wie folgt aufgebaut:

	Wort- Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Statusword	n						9	iehe	[84	<u> </u>							
Basic	n + 1	St	Statusmeldungen für standard-I/O-Kanäle [▶ 105] und IO-Link-Master-Kanäle [▶ 124]														
	 n + 2																
Feldbusbits	n + 3		Status der sicheren Einheit [▶ 87]														
Safety-	n + 4				Proz	esseing	gangsda	aten s	icher	e I/O	-Kanä	le [Þ	86]				
Status	 n + 10																
IO-Link-	n + 11		IO-Link-Prozess-Eingangsdaten [▶ 124]														
Kanäle	 n + 42																
Diagnosen	n + 43	-	Überstromdiagnosen [▶ 105]														
	n + 44			DXP-D	iagnos	en [1	05]			-	-	-	-	-	-	-	-
	n + 45					IO-	Link-Po	rt-Dia	ignos	en [124]			•			
	 n + 46																
IO-Link-	n + 46						IO-Lin	k-Eve	nts [▶ 124	.]						
Events	 n + 78																
Moduls- Status	n + 79						Мос	lulsta	tus [84]							

24.2.2 Prozess-Eingangsdaten – IO-Link-Kanäle

Wort- Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
							Ba	sic								
n + 1	DXP15 C7/X7 P2	DI14 C7/X7 P4	DXP13 C6/X6 P2	DI12 C6/X6 P4	-	-	-	-	-	-	-	-	-	-	-	-
n + 2	-	DVS 14	-	DVS 12	-	-	-	-	-	-	-	-	-	-	-	-
					IC)-Link-	Prozes	seing	angsda	iten	'	'	'	'	'	
n + 11 n + 26	IOL1–Prozesseingangsdaten (Steckplatz C6/X6) Aufbau abhängig von der Parametrierung des Kanals															
n + 27 n + 42	IOL2–Prozesseingangsdaten (Steckplatz C7/X7) Aufbau abhängig von der Parametrierung des Kanals															
					Übers	tromd	iagnos	e Sen	sorvers	orgung	(IOL1)					
n + 43	-	-	-	-	-	-	-	-	-	VER- RV1 K1213	-	-	-	-	-	-
			'		'	Üb	erstror	n Aus	gang		'	'	'		- 1	
n + 44	SCO15	-	SCO13	-	-	-	-	-	-	-	-	-	-	-	-	-
				IO-Li	nk-Po	rt-Diag	nosen	- IOL	1 (Stecl	kplatz Co	6/X6)	•	•			
n + 45	GEN- ERR	OVL	V HIGH	V LOW	ULVE	LLVU	ОТМР	PRM ERR	EVT1	EVT2	PD INV	HW ERR	DS ERR	CFG ERR	PPE	-
				IO-Li	ink-Po	rt-Diag	nosen	– IOL	2 (Stecl	kplatz C	7/X7)					
n + 46	GEN- ERR	OVL	VHIGH	V LOW	ULVE	LLVU	ОТМР	PRM ERR	EVT1	EVT2	PD INV	HW ERR	DS ERR	CFG ERR	PPE	-
							10-1	_ink-E	vents							
n + 47	Port (1.	Event)							Qualifie	er (1. Eve	ent)					
n + 48	Event C	ode Lo	w-Byte (1. Even	t)				Event Code High-Byte (1. Event)							
									ı							
n + 77	Port (16	. Event)						Qualifier (16. Event)							
n + 78	Event C	ode Lo	w-Byte (16. Evei	nt)				Event (Code Hig	h-Byte	(16. Ev	ent)			

Bedeutung der Prozessdaten-Bits

Name	Wert	Bedeutung						
I/O-Daten								
DXP	konfig	urierbarer digitaler Kanal (DXP-Kanal)	C/X = Steckverbinder					
C/XP	0	Kein Eingangssignal an DXP-Kanal (Pin 2)	COC7 (TBEN-L4 bzw. TBEN-L5) XOX7 (TBEN-LL)					
	1	Eingangssignal an DXP-Kanal (Pin 2)	−P = Pin					
DVS	Eingan	gswert gültig (Data Valid Signal)						
	0	 Die IO-Link-Daten sind ungültig. Mögliche Ursachen: Sensorversorgung liegt unterhalb des zulässigen Bereichs. IO-Link-Port ist als einfacher digitaler Eingang parametriert. Kein Device am Master angeschlossen. Keine Eingangsdaten vom angeschlossenen Device empfangen (ginur für Devices mit einer Eingangsdatenlänge > 0). Das angeschlossene Device reagiert nicht auf das Senden von Ausgangsdaten (gilt nur für Devices mit einer Ausgangsdatenlänge > 0 Das angeschlossene Device sendet den Fehler Prozess-Eingangsdaten ungültig. 						
	1	Die IO-Link-Daten sind gültig.						
IO-Link- Prozess- Eingangs- daten	Link-Pı	s-Eingangsdaten des angeschlossenen [rozess-Eingangsdaten kann durch den P eändert werden.	_					
Diagnosen								
SCO	Überst	rom Ausgang						
	0	kein Überstrom						
	1	1 Überstrom am Ausgang (bei Nutzung des DXP-Kanals als Ausgang)						
IO-Link-Port- Diagnosen	s. "Soft	ware-Diagnosemeldungen", [▶ 127]						
IO-Link- Events	s. "IO-L	ink-Events", [▶ 130]						

24.3 Prozess-Ausgangsdaten

24.3.1 Übersicht – Gesamtmodul

Die Prozess-Ausgangsdaten des Geräts sind wie folgt aufgebaut:

	Wort- Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Basic	n + 1	Contro	ntrol: DXP-Kanäle														
Feldbusbits	n + 2	Status	atus der sicheren Einheit [▶ 91]														
Safety- Status	n + 3	Unlock	nlock Safe Unit [▶ 90]														
IO-Link- Kanäle	n + 4 n + 5	IO-Linl	k-Proze	ss-Aus <u>c</u>	gangsd	aten [Þ	126]										

24.3.2 Prozess-Ausgangsdaten – IO-Link-Kanäle

Wort-Nr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Basic	•					•										
n + 1	DXP15 C7/X7 P2	-	DXP13 C6/X6 P2	-	-	-	_	-	-	-	-	-	-	-	-	-
 IO-Link-P	 O-Link-Prozess-Ausgangsdaten															
n + 4 n + 19	IOL1 (Steckplatz C6/X6) Aufbau abhängig von der Parametrierung des Kanals (032 Byte pro Kanal)															
n + 20 n + 35	IOL2 (Steckplatz C7/X7) Aufbau abhängig von der Parametrierung des Kanals (032 Byte pro Kanal)															

Bedeutung der Prozessdatenbits

Name	Wert	Bedeutung						
I/O-Daten								
DXP	0	Ausgang inaktiv	C/X = Steckverbinder					
C/XP	1	Ausgang aktiv, max. Ausgangsstrom 0,6 A	C0C7 (TBEN-L4 bzw. TBEN-L5) X0X7 (TBEN-LL) P = Pin					
IO-Link- Prozess- Ausgangs- daten	Link-Pro	Prozess-Ausgangsdaten des angeschlossenen Device. Die Reihenfolge der IO- Link-Prozess-Ausgangsdaten kann durch den Parameter Ausgangsdaten-Map- ping geändert werden.						

24.4 Software-Diagnosemeldungen

Bei den Diagnosemeldungen wird zwischen DXP-, IO-Link-Master-und IO-Link-Device-Diagnosen unterschieden.

Eine "PDinvalid"-Diagnose (Prozessdaten ungültig) kann sowohl vom IO-Link-Master als auch vom IO-Link-Device gesendet werden.

DXP-Diagnosen:

Diagnosemeldungen der universellen Digitalkanäle (DXP13 und DXP15)

■ IO-Link-Master-Diagnosen (M):

Der IO-Link-Master meldet Probleme in der IO-Link-Kommunikation.

■ IO-Link-Device-Diagnosen (D):

Die Device-Diagnosen bilden die von den IO-Link-Devices gesendeten IO-Link Event-Codes (gemäß IO-Link Spezifikation) im Diagnosetelegramm des Masters ab.

Event Codes können unter Verwendung entsprechender Device-Tools (z. B. IODD-Interpreter) aus den angeschlossenen Devices herausgelesen werden.

Nähere Informationen zu den IO-Link-Event-Codes und deren Bedeutung entnehmen Sie der IO-Link Spezifikation oder der Dokumentation zum angeschlossenen IO-Link-Device.

Byte-Nr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		D	XP-Diagnose	n – Übers	trom Sen	sorversor	ung			
0	-	VERR V1 K1213	-	-	-	-	-	-		
1	-	-	-	-	-	-	-	-		
2	-	-	-	-	-	-	-	-		
3	SCO15	-	SCO13	-	-	-	-	-		
		IO-Link-Port 1 (Kanal 12)								
0	EVT1 (D)	EVT2 (D)	PDINV (D, M)	HWERR (D)	DSERR (M)	CFGERR (M)	PPE (M)	-		
1	GENERR (D)	OLV (D)	VHIGH (D)	VLOW (D)	ULVE (D)	LLVU (D)	OTEMP (D)	PRMERR (D)		
			IO-L	ink-Port	2 (Kanal 1	4)				
2	EVT1 (D)	EVT2 (D)	PDINV (D, M)	HWERR (D)	DSERR (M)	CFGERR (M)	PPE (M)	-		
3	GENERR (D)	OLV (D)	VHIGH (D)	VLOW (D)	OW ULVE LL (D) (D		OTEMP (D)	PRMERR (D)		

Bit	Bedeutung
DXP-Diagi	nosen
VERRV1 K1213	Überstrom Versorgung VAUX1 an Kanal 12/13
SCO	Überstrom am Ausgang (bei Nutzung des DXP-Kanals als Ausgang)
IO-Link-Ma	aster-Diagnosen
CFGER	Falsches oder fehlendes Device Das angeschlossene Device passt nicht zur Kanal-Konfiguration oder es ist kein Device am Kanal angeschlossen. Diese Diagnose ist abhängig von der Parame- trierung des Kanals.

Bit	Bedeutung
DSER	 Fehler in Datenhaltung Mögliche Ursachen: Datenhaltungsabgleich fehlerhaft: IO-Link Device gemäß IO-Link V1.0 angeschlossen. Der Datenhaltungspuffer enthält Daten eines anderen Device. Überlauf des Datenhaltungsspeichers Parameterzugriff für Datenhaltung nicht möglich Das angeschlossene Device ist eventuell für Parameteränderungen oder für die Datenhaltung gesperrt.
PPE	Port-Parametrierung Die Port-Parameter sind inkonsistent. Mögliche Ursache: Eine Betriebsart mit Überprüfung ist eingestellt, die Vendor- oder Device-ID in der Port-Konfiguration sind jedoch "0". Das angeschlossene Gerät kann nicht identifiziert und daher nicht parametriert werden.
IO-Link-Mas	ster-/Device-Diagnose
PDINV	Prozess-Eingangsdaten ungültig Der IO-Link-Master oder das IO-Link-Device melden ungültige Prozess-Eingangsdaten. Das angeschlossene Device ist nicht im Zustand "Operate", d. h. ist nicht betriebsbereit. Mögliche Ursache: Das angeschlossenen Gerät entspricht nicht dem konfigurierten, zusätzliche Diagnose Falsches oder fehlendes Device. Prozess-Eingangsdaten ungültig-Diagnose, weil der Prozesswert nicht zu erfassen ist (abhängig vom IO-Link-Device).
IO-Link-Dev	rice-Diagnosen
	Die IO-Link-Device-Diagnosen sind abhängig vom eingesetzten IO-Link-Device. Genauere Angaben zu den Diagnosen entnehmen Sie bitte der Dokumentation zum IO-Link-Device.
EVT1	Wartungsereignisse Ein Wartungsereignis gemäß IO-Link-Spezifikation ist eingetreten, Wartung erforderlich.
EVT2	Grenzwertereignisse Ein Grenzwertereignis gemäß IO-Link-Spezifikation ist eingetreten.
GENERR	Sammelfehler Das Device sendet einen Fehler (Device-Status 4 gemäß IO-Link-Spezifikation), der nicht genauer spezifiziert ist. Lesen Sie die Event-Codes des Device aus, um den Fehler genauer spezifizieren zu können.
HWER	Hardware-Fehler allgemeiner Hardware-Fehler oder Fehlfunktion des angeschlossenen Device
LLVU	Unterer Grenzwert unterschritten Der Prozesswert hat den parametrierten Messbereich unterschritten oder der untere Messbereich ist zu hoch gewählt.
OLV	Überlast Das angeschlossene Device hat eine Überlast erkannt.
OTMP	Übertemperatur Am angeschlossenen Device liegt eine Temperaturdiagnose vor.
PRMERR	Parametrierungsfehler Das angeschlossene Device meldet einen Parametrierungsfehler (Verlust der Parametereinstellungen, Parameter nicht initialisiert etc.).

Bit	Bedeutung
ULVE	Oberer Grenzwert überschritten Der Prozesswert hat den parametrierten Messbereich überschritten, oder der obere Messbereich ist zu niedrig gewählt.
VLOW	Unterspannung Eine der Spannungen am angeschlossenen Device liegt unterhalb des definier- ten Bereichs.
VHIGH	Überspannung Eine der Spannungen am angeschlossenen Device liegt oberhalb des definier- ten Bereichs.

24.5 IO-Link-Funktionen für die azyklische Kommunikation

Der azyklische Zugriff auf Daten von IO-Link-Geräten erfolgt über IO-Link CALLs. Dabei muss zwischen Datensätzen des IO-Link-Masters (IOLM) und Datensätzen angeschlossener IO-Link-Devices (IOLD) unterschieden werden.

Welches Gerät über die IO-Link-CALLs angesprochen wird, entscheidet die Adressierung des CALLs.

Die Adressierung erfolgt über den Entitiy_Port:

- Entity_Port 0 = IO-Link-Mastermodul (IOLM)
- Entity_Port 1 = IO-Link-Device an IO-Link-Port 1
- Entity_Port 2 = IO-Link-Device an IO-Link-Port 2

24.5.1 Port-Funktionen für Port 0 (IO-Link-Master)

IO-Link-Index (Port function invocation)

Der Zugriff auf die IO-Link-Master-Funktionen (Port 0) erfolgt über Index 65535.

Subindex 64: Master Port Validation Configuration

Das Objekt schreibt eine bestimmte Konfiguration der Devices, die am IO-Link-Port angeschlossen werden sollen, in den Master. Der Master speichert die Daten für das IO-Link-Device, das am Port erwartet wird, und akzeptiert an dem Port danach nur ein Gerät mit exakt übereinstimmenden Daten (Vendor-ID, Device-ID und Serial Number).

Die Verwendung der Master Port Validation Configuration ist nur in Verbindung mit der Wahl einer Betriebsart mit Überprüfung (IO-Link mit Familien-kompatiblem Gerät, IO-Link mit kompatiblem Gerät, IO-Link mit identischem Gerät) sinnvoll.

Entity_Port	IO-Link-Subindex	Read/Write	Länge
0	64	Write	max. 72 Byte

Struktur des Befehls IOL_Port_Config:

	Inhalt	Größe	Format	Bemerkung
IOL1	VENDOR_ID	2 Byte	Unsigned 16	
	DEVICE_ID	4 Byte	Unsigned 32	
	FUNCTION_ID	2 Byte	Unsigned 16	Wert: 0
	SERIAL_NUMBER	16 Byte	String	
IOL2	VENDOR_ID	2 Byte	Unsigned 16	
	DEVICE_ID	4 Byte	Unsigned 32	
	FUNCTION_ID	2 Byte	Unsigned 16	Wert: 0
	SERIAL_NUMBER	16 Byte	String	

Subindex 65: IO-Link Events

Das Objekt liest die IO-Link-Event-Diagnosen.

Entity_Port	IO-Link-Subindex	Read/Write	Länge
0	65	Read	255 Byte

HINWEIS

Nur Appears (kommende Diagnosen) und Single Shot Events (Einzelereignisse) werden so lange angezeigt, wie sie anliegen.

Struktur der auszulesenden Daten:

- Byte 0 enthält 2 Bit pro IO-Link-Port, die anzeigen, ob die Prozessdaten des angeschlossenen Device gültig sind.
- 4 Byte pro Diagnose-Event, die die Diagnose genauer zuordnen und spezifizieren. Maximal 14 Events pro IO-Link-Port werden angezeigt.

Byte-Nr.	Bit-	Nr.							Beschreibung
	7	6	5	4	3	2	1	0	
0								Х	PD_Valid Input Port 1
							Х		PD_Valid Output Port 1
					·	Х		·	PD_Valid Input Port 2
					Х	·		·	PD_Valid Output Port 2
					-				reserviert
1	res	ervie	rt						
2	Qu	alifie	r						Art des Events (Warning, Notification, Single Shot Event etc.) gemäß IO-Link-Spezifikation "IO-Link Interface and System"
3	Poi	t							IO-Link-Port, der ein Event sendet
4	Eve	ent C	ode I	High-	-Byte				High- bzw- Low-Byte des gesendeten Event
5	Eve	ent C	ode I	Low-	Byte				Codes
223	Qu	alifie	r						siehe Byte 25
224	Poi	t							_
225	Eve	ent C	ode l	High-	-Byte				
226	Eve	ent C	ode I	Low-	Byte				

Subindex 66: Set Default Parameterization

Das Beschreiben dieses Objekts setzt den IO-Link-Master in den Auslieferungszustand zurück. Jegliche Parametereinstellung und Konfiguration wird überschrieben. Auch der Datenhaltungspuffer wird gelöscht.

Entity_Port	IO-Link-Subindex	Read/Write	Länge
0	66	Write	4 Byte

Struktur des Reset-Befehls:

Byte 3	Byte 2	Byte 1	Byte 0
0xEF	0xBE	0xAD	0xDE

Subindex 67: Teach Mode

Der Master liest alle Daten (Device-ID, Vendor- ID, Seriennummer etc.) aus dem angeschlossenen Device aus und speichert sie ab. Alle zuvor gespeicherten Device-Daten werden überschrieben.

Entity_Port	IO-Link-Subindex	Read/Write	Länge
0	67	Write	1 Byte

Struktur des Teach-Befehls:

Byte 0	
0x00	alle Ports teachen
0x01	Port 1 teachen
0x02	Port 2 teachen
0x030xFF	reserviert

Subindex 68: Master Port Scan Configuration

Das Objekt liest die Konfiguration der IO-Link-Devices aus, die an den IO-Link-Master angeschlossen sind.

Pro IO-Link-Port werden 28 Byte zurückgeliefert.

Entity_Port	IO-Link-Subindex	Read/Write	Länge
0	68	Read	max. 120 Byte

Struktur des Antworttelegramms:

IO-Link-Port	Inhalt	Länge	Format	Beschreibung
Port 1	Vendor ID	2 Byte	UINT16	Vendor-ID des angeschlossenen Device
	Device ID	4 Byte	UINT32	Device-ID des angeschlossenen Device
	Function ID	2 Byte	UINT16	reserviert
	Serial Number	16 Byte	UINT8	Seriennummer des angeschlossenen Device
	COM_Revision	1 Byte	UINT8	IO-Link-Version
	Proc_In_Length	1 Byte	UINT8	Länge der Eingangsprozessdaten des angeschlossenen Device
	Proc_Out_Length	1 Byte	UINT8	Länge der Ausgangsprozessdaten des angeschlossenen Device
	Cycle time	1 Byte	UINT8	Zykluszeit des angeschlossenen Device
Port 2	Struktur jeweils ge	emäß Port 1		

Subindex 69: Extended Port Diagnostics

Das Objekt liest die erweiterte Port-Diagnose.

Entity_Port	IO-Link-Subindex	Read/Write	Länge
0	68	Read	max. 8 Byte

Struktur der erweiterten Port-Diagnose:

Byte-Nr.	Bit-Nr.							
	7	6	5	4	3	2	1	0
0	NO_SIO	TCYC	-	-	DS_F	NO_DS	-	-
1	-	WD	MD	PDI_H	-	-	NO_PD	
2	-	-	-	-	-	-	-	-
3	Device-Status gemäß IO-Link-Spezifikation							

Diagnose-Bit	Bedeutung		
NO_DS	Der parametrierte Modus des Ports unterstützt keine Datenhaltung. Abhilfe: Parametrierung des Ports ändern		
DS_F	Fehler in der Datenhaltung, Synchronisation nicht möglich. Mögliche Ursachen: ■ angeschlossenes Device unterstützt keine Datenhaltung ■ Überlauf des Datenhaltungsspeichers		
	Abhilfe:		
	Device anschließen, das Datenhaltung unterstützt.		
	Datenhaltungsspeicher löschen.		
	Datenhaltung deaktivieren.		
TCYC Das Device unterstützt die im Master parametrierte Zykluszeit nicht Abhilfe:			
	► Im Master eingestellte Zykluszeit erhöhen.		

Diagnose-Bit	Bedeutung		
NO_SIO	Das Device unterstützt den Standard DI (SIO)-Modus nicht. Abhilfe:		
	► IO-Link-Modus für diesen Port wählen.		
NO_PD	Es sind keine Prozessdaten verfügbar. Das angeschlossene Device ist nicht betriebsbereit. Abhilfe:		
	Konfiguration überprüfen.		
PDI_E	Das angeschlossene Device meldet ungültige Prozessdaten gemäß IO-Link- Spezifikation V1.0.		
PDI_H	Das angeschlossene Device meldet ungültige Prozessdaten gemäß IO-Link-Spezifikation V1.1.		
MD	Fehlendes Device, kein IO-Link-Device erkannt. Abhilfe: IO-Link-Kabel überprüfen Device austauschen		
WD	Falsches Device erkannt: einer oder mehrere der Parameter des angeschlossenen Device (Device-ID, Vendor-ID, Seriennummer) passt/passen nicht zu denen, die im Master für das Device gespeichert sind. Abhilfe: Device austauschen		
	Master-Parametrierung anpassen		

Device Status

Wert	Bedeutung	
0	Device arbeitet korrekt	
1	Wartungsereignis	
2	Out-of-Specification Event	
3	Funktions-Check	
4	Fehler	
5255	reserviert	

24.6 Datenhaltungsmodus nutzen

Datenhaltungsmodus

HINWEIS

Der Datenhaltungsmodus ist nur für Geräte verfügbar, die der IO-Link-Spezifikation V1.1 entsprechen.

Der Datenhaltungsmodus wird im IO-Link-Master über den Parameter "Datenhaltungsmodus" gesetzt.

- 00 = aktiviert
- 01 = überschreiben
- 10 = einlesen
- 11 = deaktiviert, löschen

Abb. 92: Datenhaltungsmodus – generelles Prinzip, Para. IOLD = Parameter des IO-Link-Device

Eine Parameteränderung im Device wird über den Zustand des Bits DS_UPLOAD_FLAG angezeigt:

- 0 = keine Änderungen am Device-Parameterdatensatz vorgenommen
- 1 = Änderungen am Device-Parameterdatensatz vorgenommen (z. B. über DTM, am Device selbst, etc.)

24.6.1 Parameter Datenhaltungsmodus = aktiviert

Die Synchronisation der Parameterdatensätze erfolgt in beide Richtungen. Grundsätzlich ist immer der aktuelle Datensatz (im Master oder im Gerät) gültig. Dabei gilt:

- Der Datensatz im Device ist aktuell, wenn DS_UPLOAD_FLAG = 1.
- Der Datensatz im Master ist aktuell, wenn DS_UPLOAD_FLAG = 0.

Anwendungsfall 1: Gerät z. B. über einen DTM parametrieren

- ✓ Das IO-Link-Device ist bereits in der Anlage verbaut und mit dem Master verbunden.
- Gerät über DTM parametrieren.
- ⇒ DS_UPLOAD_FLAG = 1, Änderungen am Device-Parameterdatensatz erfolgt.
- Die Paramterdaten werden vom neuen IO-Link-Device in den IO-Link-Master übernommen.

Abb. 93: Datenhaltungsmodus aktiviert – Parameterdatensatz im Device verändert

Anwendungsfall 2: defektes Device durch ein Device im Auslieferungszustand ersetzen

- ✓ Das **neue** IO-Link-Device war vorher **nicht** mit dem Master verbunden.
- ▶ Die Parameter des neuen IO-Link-Device bleiben unverändert, DS UPLOAD FLAG = 0.
- Die Parameterdaten des defekten Geräts werden vom IO-Link-Master in das neue IO-Link-Device übernommen.

Abb. 94: Datenhaltungsmodus aktiviert – Parameterdatensatz im Device unverändert

Anwendungsfall 3: defektes Device durch ein Device mit unbekannten (veränderten) Parametern ersetzen

- ✓ Das **neue** IO-Link-Device war vorher **nicht** mit dem Master verbunden.
- ▶ Die Parameter des neuen IO-Link-Device wurden in der Vergangenheit verändert, DS UPLOAD FLAG = 1.
- Die Parameterdaten werden vom neuen IO-Link-Device in den IO-Link-Master übernommen.

Abb. 95: Datenhaltungsmodus aktiviert – Parameterdatensatz im Device verändert

HINWEIS

Wenn ein Geräteaustausch bei aktivierter Datenhaltung notwendig ist, sollte ein IO-Link-Austausch-Device mit unbekannten Parameterdaten vor dem Anschluss an den IO-Link-Master auf seine Werkseinstellungen zurückgesetzt werden.

Turck-IO-Link-Devices können per System-Kommando über einen generischen IO-Link-DTM und die Geräte-spezifische IODD auf die Werkseinstellungen zurückgesetzt werden. Zum Rücksetzen von Fremdgeräten lesen Sie bitte die jeweilige Herstellerdokumentation.

24.6.2 Parameter Datenhaltungsmodus = einlesen

- Als Referenz gilt immer der Datensatz im Device.
- Die Synchronisation der Parameterdatensätze erfolgt nur in Richtung Master.
- Der Zustand des DS_UPLOAD_FLAG wird ignoriert.

Abb. 96: Datenhaltungsmodus = einlesen – Parameterdatensatz im Device verändert

24.6.3 Parameter Datenhaltungsmodus = überschreiben

- Als Referenz gilt **immer** der Datensatz im Master.
- Die Synchronisation der Parameterdatensätze erfolgt nur in Richtung Device.
- Der Zustand des DS_UPLOAD_FLAG wird ignoriert.

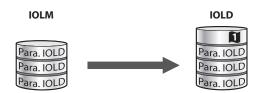


Abb. 97: Datenhaltungsmodus = überschreiben – Parameterdatensatz im Master verändert

24.6.4 Parameter Datenhaltungsmodus = deaktiviert, löschen

- Der Datensatz im Master wird gelöscht.
- Die Synchronisation der Parameterdatensätze ist deaktiviert.

Abb. 98: Datenhaltungsmodus deaktiviert – keine Synchronisation

25 Störungen beseitigen

25.1 Parametrierfehler beheben

DXP-Kanäle

Fehler	Mögliche Ursachen	Maß	nahme
DXP-Ausgang schaltet nicht	Der Ausgang ist in der Default-Einstellung des Geräts deaktiviert.	•	Ausgangsfunktion über den Parameter Ausgang aktivieren (DXP_EN_DO = 1) freischalten.

IO-Link-Kanäle

LED- Verhalten	Diagnose	Mögliche Ursachen	Maßı	nahme
LED MS und IOL blinken rot	Fehler in Datenhaltung	Ein IO-Link Device gemäß IO-Link V1.0 ist angeschlossen. Geräte nach IO-Link V1.0 unterstützen keine Datenhaltung.	•	Parameter Datenhaltungsmodus auf deaktiviert , löschen setzen.
			⇨	Die Datenhaltung bleibt dauerhaft deaktiviert.
		Der Datenhaltungspuffer des IO- Link-Masters enthält Daten eines anderen Device.	•	Parameter Datenhaltungsmodus auf deaktiviert , löschen setzen.
			•	Wenn die Datenhaltung genutzt werden soll, Datenhaltung wieder aktivieren.
	Falsches oder fehlendes Gerät	Das angeschlossene Device ent- spricht nicht dem konfigurierten (falsche Vendor-ID, Device-ID, etc.).	•	Parametrierung des IO-Link-Ports (Vendor-ID, Device-ID, etc) am Master anpassen. Die Parametrierung erfolgt entweder manuell über den DTM, den Webserver o. Ä. oder durch das Teachen des Masters über einen IO-Link-Call (Port-Funktion 0, Subindex 67: Teach Mode).
	Prozess-Eingangs- daten ungültig	Bestimmte IO-Link-Devices senden eine Prozess-Eingangsdaten ungültig- Diagnose, wenn der Prozesswert nicht zu erfassen ist.	•	Senden der Diagnose für den IO- Link-Port über den Parameter Prozess-Eingangsdaten ungültig > erzeugt keine Diagnose deaktivie- ren.

26 Technische Daten – IO-Link-Kanäle

Der erste Abschnitt der Betriebsanleitung enthält die allgemeinen technischen Daten des Geräts [97].

Technische Daten		
Versorgung		
Zulässiger Bereich	20,4 28,8 VDC (gemäß IO-Link Spezifikation)	
Betriebsstrom	< 120 mA	
Versorgung der IO-Link-Ports		
IO-Link Port 1 an C6 bzw. X6	VAUX1, max. 2 A	
IO-Link Port 2 an C7 bzw. X7	FSO1, max. 2 A	
Derating	1.5 0-40 0 40 70 [°C]	
Potenzialtrennung	≥ 500 V (V2 zu Ethernet und V1)	
IO-Link-Ports		
Ports	4	
IO-Link Spezifikation	V1.0, V1.1 nach IEC 61131-9	
Ausgang IO-Link Porttyp	Class A und Class B	
Frametyp	unterstützt alle Frametypen	
Prozessdaten für IO-Link-Devices Inputdaten Outputdaten Übertragungsrate	max. 32 Byte pro Kanal max. 32 Byte pro Kanal 4,8 kBit/s (COM 1)	
Opertragungsrate	4,8 kBit/s (COM 1) 38,4 kBit/s (COM 2) 230,4 kBit/s (COM 3)	
Verbindungsleitung	Länge: maximal 20 m, Standardleitungen, 3- oder 4-Leiter (je nach Anwendung), unge- schirmt	

27 Anhang: Zulassungen und Kennzeichnungen

Zulassungen	Kennzeichnung gemäß ATEX-Richtlinie	EN 60079-0/-7/-31
ATEX-Zulassung Nr.: TÜV 20 ATEX 264795 X	⑤ II 3 G⑥ II 3 D	Ex ec IIC T4 Gc Ex tc IIIC T115 °C Dc
IECEx-Zulassung Nr.: IECEx TUN 20.0010X		Ex ec IIC T4 Gc Ex tc IIIC T115 °C Dc

Umgebungstemperatur T_{amb} : -25 °C...+60 °C

Typenbezeichnung	TBLFDIO1-2IOL	
Versorgungsspannung	24 VDC ±10 %	
Eingangsstrom I _{max}	9 A (Gesamtstrom pro Modul)	
Ausgangsstrom I _{max}	1,5 A (pro Ausgang)	

28 Turck-Niederlassungen – Kontaktdaten

Deutschland Hans Turck GmbH & Co. KG

Witzlebenstraße 7, 45472 Mülheim an der Ruhr

www.turck.de

Australien Turck Australia Pty Ltd

Building 4, 19-25 Duerdin Street, Notting Hill, 3168 Victoria

www.turck.com.au

Belgien TURCK MULTIPROX

Lion d'Orweg 12, B-9300 Aalst

www.multiprox.be

Brasilien Turck do Brasil Automação Ltda.

Rua Anjo Custódio Nr. 42, Jardim Anália Franco, CEP 03358-040 São Paulo

www.turck.com.br

China Turck (Tianjin) Sensor Co. Ltd.

18,4th Xinghuazhi Road, Xiqing Economic Development Area, 300381

Tianjin

www.turck.com.cn

Frankreich TURCK BANNER S.A.S.

11 rue de Courtalin Bat C, Magny Le Hongre, F-77703 MARNE LA VALLEE

Cedex 4

www.turckbanner.fr

Großbritannien TURCK BANNER LIMITED

Blenheim House, Hurricane Way, GB-SS11 8YT Wickford, Essex

www.turckbanner.co.uk

Indien TURCK India Automation Pvt. Ltd.

401-403 Aurum Avenue, Survey. No 109 /4, Near Cummins Complex,

Baner-Balewadi Link Rd., 411045 Pune - Maharashtra

www.turck.co.in

Italien TURCK BANNER S.R.L.

Via San Domenico 5, IT-20008 Bareggio (MI)

www.turckbanner.it

Japan TURCK Japan Corporation

Syuuhou Bldg. 6F, 2-13-12, Kanda-Sudacho, Chiyoda-ku, 101-0041 Tokyo

www.turck.jp

Kanada Turck Canada Inc.

140 Duffield Drive, CDN-Markham, Ontario L6G 1B5

www.turck.ca

Korea Turck Korea Co, Ltd.

B-509 Gwangmyeong Technopark, 60 Haan-ro, Gwangmyeong-si,

14322 Gyeonggi-Do www.turck.kr

Malaysia Turck Banner Malaysia Sdn Bhd

Unit A-23A-08, Tower A, Pinnacle Petaling Jaya, Jalan Utara C,

46200 Petaling Jaya Selangor www.turckbanner.my

Mexiko Turck Comercial, S. de RL de CV

Blvd. Campestre No. 100, Parque Industrial SERVER, C.P. 25350 Arteaga,

Coahuila

www.turck.com.mx

Niederlande Turck B. V.

Ruiterlaan 7, NL-8019 BN Zwolle

www.turck.nl

Österreich Turck GmbH

Graumanngasse 7/A5-1, A-1150 Wien

www.turck.at

Polen TURCK sp.z.o.o.

Wrocławska 115, PL-45-836 Opole

www.turck.pl

Rumänien Turck Automation Romania SRL

Str. Siriului nr. 6-8, Sector 1, RO-014354 Bucuresti

www.turck.ro

Russland TURCK RUS OOO

2-nd Pryadilnaya Street, 1, 105037 Moscow

www.turck.ru

Schweden Turck Sweden Office

Fabriksstråket 9, 433 76 Jonsered

www.turck.se

Singapur TURCK BANNER Singapore Pte. Ltd.

25 International Business Park, #04-75/77 (West Wing) German Centre,

609916 Singapore www.turckbanner.sg

Südafrika Turck Banner (Pty) Ltd

Boeing Road East, Bedfordview, ZA-2007 Johannesburg

www.turckbanner.co.za

Tschechien TURCK s.r.o.

Na Brne 2065, CZ-500 06 Hradec Králové

www.turck.cz

Türkei Turck Otomasyon Ticaret Limited Sirketi

Inönü mah. Kayisdagi c., Yesil Konak Evleri No: 178, A Blok D:4,

34755 Kadiköy/ Istanbul www.turck.com.tr

Ungarn TURCK Hungary kft.

Árpád fejedelem útja 26-28., Óbuda Gate, 2. em., H-1023 Budapest

www.turck.hu

USA Turck Inc.

3000 Campus Drive, USA-MN 55441 Minneapolis

www.turck.us

TURCK

Over 30 subsidiaries and over 60 representations worldwide!

