

TN-UHF-...-OPC-UA UHF-Reader

Inhaltsverzeichnis

1	Uper ales	se Anieitung	4		
	1.1	Zielgruppen	4		
	1.2	Symbolerläuterung	4		
	1.3	Weitere Unterlagen	4		
	1.4	Namenskonvention	4		
	1.5	Feedback zu dieser Anleitung	5		
2	Hinweise zum Produkt				
	2.1	Produktidentifizierung	6		
	2.2	Lieferumfang			
	2.3	Turck-Service			
3	Zu Ihrer Sicherheit				
,	3.1	Bestimmungsgemäße Verwendung			
	3.2	Allgemeine Sicherheitshinweise			
	3.3	Hinweise zur EU-Richtlinie 2014/53/EU (RED-Richtlinie)			
4		peschreibung			
	4.1 4.1.1	Geräteübersicht			
	4.2	Eigenschaften und Merkmale			
	4.3	Funktionsprinzip			
	4.4	Funktionen und Betriebsarten			
	4.4.1	Arbeitsfrequenz			
	4.4.2	Kompatible OPC-UA-Clients			
	4.4.3	Authentifizierung und Verschlüsselung			
	4.4.4	RFID-Befehle (Methoden)			
5	Montieren				
6	Anschlie	3en	14		
	6.1	Geräte an Ethernet anschließen	14		
	6.2	Versorgungsspannung anschließen	15		
	6.3	Digitale Sensoren und Aktuatoren anschließen	16		
	6.4	Externe Antennen anschließen	17		
7	In Betriek	o nehmen	18		
	7.1	Reader mit dem Webserver parametrieren	18		
	7.1.1	Webserver öffnen			
	7.1.2	Einstellungen im Webserver bearbeiten			
	7.2	Reader mit dem Webserver testen	23		
	7.3	Netzwerk-Einstellungen anpassen			
	7.3.1	Netzwerk-Einstellungen über TAS (Turck Automation Suite) anpassen			
	7.3.2	Netzwerk-Einstellungen über den Webserver anpassen Gerät über den Webserver für die Inbetriebnahme vorbereiten			
	7.4 7.4.1	Webserver öffnen und Einstellungen bearbeiten			
	7.4.2	Verbindung zwischen OPC-UA-Server und OPC-UA-Client aufbauen			
	7.4.3	Sicherheitszertifikate validieren			
	7.4.4	Einstellungen für die OPC-UA-Kommunikation anpassen – Set Endpoints			
	7.4.5	OPC-UA-Passwort setzen			
	7.4.6	OPC-UA-Client über ein SDK einrichten	44		

8	Einstellen			
	8.1 8.1.1	Informationsmodell – Mapping		
	8.1.2	Digitale Kanäle (DXP) – Mapping im Informationsmodell		
	8.2 8.2.1 8.2.2	RFID-Interfaces über den Webserver parametrieren Digitale Kanäle (DXP) über den Webserver parametrieren Digitale Kanäle – Zuschaltbare Versorgungsspannung VAUX parametrieren	54	
	8.3 8.3.1 8.3.2	Gerät mit Demo-Programmen testen	57	
9	9 Betreiben			
	9.1 9.1.1	Methode ausführen und Daten abrufen Beispiel: Datenträger mit spezifischem UID lesen oder schreiben		
	9.2	Sensor-Signale und RFID-Methoden verknüpfen	66	
	9.3	LED-Anzeigen	66	
	9.4 9.4.1 9.4.2 9.5	Status- und Diagnosemeldungen auslesen OPC-UA-spezifische Diagnosemeldungen auslesen Kanal- und Modul-Diagnosemeldungen im Webserver aufrufen Gerät zurücksetzen (Reset)	67 69	
10	Störungen beseitigen			
	10.1	Fehler beheben	72	
11	Instand halten			
	11.2	Firmware-Update über den Webserver durchführen		
12	Repariere 12.1	n Geräte zurücksenden		
13	Entsorger	1	79	
14	Technische Daten			
15	Turck-Niederlassungen – Kontaktdaten 82			

Über diese Anleitung

Die Anleitung beschreibt den Aufbau, die Funktionen und den Einsatz des Produkts und hilft Ihnen, das Produkt bestimmungsgemäß zu betreiben. Lesen Sie die Anleitung vor dem Gebrauch des Produkts aufmerksam durch. So vermeiden Sie mögliche Personen-, Sach- und Geräteschäden. Bewahren Sie die Anleitung auf, solange das Produkt genutzt wird. Falls Sie das Produkt weitergeben, geben Sie auch diese Anleitung mit.

1.1 Zielgruppen

Die vorliegende Anleitung richtet sich an fachlich geschultes Personal und muss von jeder Person sorgfältig gelesen werden, die das Gerät montiert, in Betrieb nimmt, betreibt, instand hält, demontiert oder entsorgt.

1.2 Symbolerläuterung

In dieser Anleitung werden folgende Symbole verwendet:

GEFAHR

GEFAHR kennzeichnet eine gefährliche Situation mit hohem Risiko, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht vermieden wird.

WARNIING

WARNUNG kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht vermieden wird.

VORSICHT

VORSICHT kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zu mittelschweren oder leichten Verletzungen führen kann, wenn sie nicht vermieden wird.

ACHTUNG

ACHTUNG kennzeichnet eine Situation, die zu Sachschäden führen kann, wenn sie nicht vermieden wird.

HINWEIS

Unter HINWEIS finden Sie Tipps, Empfehlungen und nützliche Informationen zu speziellen Handlungsschritten und Sachverhalten. Die Hinweise erleichtern Ihnen die Arbeit und helfen Ihnen, Mehrarbeit zu vermeiden.

HANDLUNGSAUFFORDERUNG

Dieses Zeichen kennzeichnet Handlungsschritte, die der Anwender ausführen muss.

Dieses Zeichen kennzeichnet relevante Handlungsresultate.

1.3 Weitere Unterlagen

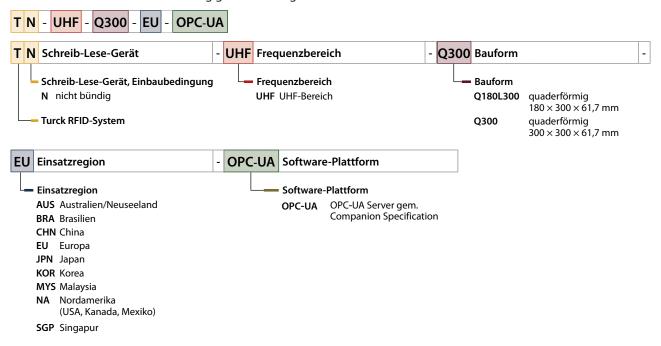
Ergänzend zu diesem Dokument finden Sie im Internet unter www.turck.com folgende Unterlagen:

- Datenblatt
- Zulassungen
- Projektierungshandbuch

1.4 Namenskonvention

Schreib-Lese-Geräte werden im HF-Bereich als "Schreib-Lese-Köpfe" und im UHF-Bereich als "Reader" bezeichnet. Geläufige Synonyme für "Datenträger" sind "Tag", "Transponder" und "mobiler Datenspeicher".

1.5 Feedback zu dieser Anleitung


Wir sind bestrebt, diese Anleitung ständig so informativ und übersichtlich wie möglich zu gestalten. Haben Sie Anregungen für eine bessere Gestaltung oder fehlen Ihnen Angaben in der Anleitung, schicken Sie Ihre Vorschläge an techdoc@turck.com.

2 Hinweise zum Produkt

2.1 Produktidentifizierung

Diese Anleitung gilt für die folgenden UHF-Reader:

2.2 Lieferumfang

Im Lieferumfang sind enthalten:

- UHF-Reader
- Wandhalterung (Metallschiene)
- Kurzbetriebsanleitung

2.3 Turck-Service

Turck unterstützt Sie bei Ihren Projekten von der ersten Analyse bis zur Inbetriebnahme Ihrer Applikation. In der Turck-Produktdatenbank unter www.turck.com finden Sie Software-Tools für Programmierung, Konfiguration oder Inbetriebnahme, Datenblätter und CAD-Dateien in vielen Exportformaten.

Die Kontaktdaten der Turck-Niederlassungen weltweit finden Sie auf S. [> 82].

3 Zu Ihrer Sicherheit

Das Produkt ist nach dem Stand der Technik konzipiert. Dennoch gibt es Restgefahren. Um Personen- und Sachschäden zu vermeiden, müssen Sie die Sicherheits- und Warnhinweise beachten. Für Schäden durch Nichtbeachtung von Sicherheits- und Warnhinweisen übernimmt Turck keine Haftung.

3.1 Bestimmungsgemäße Verwendung

Die Reader mit integriertem RFID-Interface dienen zum berührungslosen Datenaustausch mit den RFID-Datenträgern im Turck-UHF-RFID-System. Die Arbeitsfrequenz der Geräte ist in der folgenden Tabelle beschrieben:

Typenbezeichnung	Arbeitsfrequenz	Einsatzbereich (Region)
TN-UHFAUS-OPC-UA	920926 MHz	Australien, Neuseeland
TN-UHFBRA-OPC-UA	915928 MHz	Brasilien
TN-UHFCHN-OPC-UA	920,5924,5 MHz	China und Thailand
TN-UHFEU-OPC-UA	865,6867,6 MHz	Europa, Türkei, Indien
TN-UHFJPN-OPC-UA	916,7920,9 MHz	Japan
TN-UHFKOR-OPC-UA	917920,8 MHz	Korea
TN-UHFMYS-OPC-UA	919923 MHz	Malaysia
TN-UHFNA-OPC-UA	902928 MHz	Nordamerika (USA, Kanada, Mexiko)
TN-UHFSGP-OPC-UA	920925 MHz	Singapur

Die Geräte dürfen nur in Betrieb genommen werden, wenn die folgenden Bedingungen erfüllt sind:

- Der jeweilige Frequenzbereich ist für die Nutzung von UHF-RFID freigegeben.
- Der Arbeitsfrequenzbereich der Geräte stimmt mit dem regional zur Nutzung von UHF-RFID freigegebenen Bereich überein.
- Für die Einsatzregion liegt eine gültige Zertifizierung und/oder Zulassung vor, sofern gefordert.

Über einen integrierten OPC-UA-Server gemäß der AutolD Companion Specification kann das Modul mit Drittsystemen wie beispielsweise ERP-Systemen kommunizieren.

Zum Anschluss von digitalen Sensoren und Aktuatoren stehen vier konfigurierbare digitale Kanäle zur Verfügung.

Das Gerät darf nur wie in dieser Anleitung beschrieben verwendet werden. Jede andere Verwendung gilt als nicht bestimmungsgemäß. Für daraus resultierende Schäden übernimmt Turck keine Haftung.

3.2 Allgemeine Sicherheitshinweise

- Das Gerät erfüllt die EMV-Anforderungen für den industriellen Bereich. Bei Einsatz in Wohnbereichen Maßnahmen treffen, um Funkstörungen zu vermeiden.
- Nur fachlich geschultes Personal darf das Gerät montieren, installieren, betreiben, parametrieren und instand halten.
- Das Gerät nur in Übereinstimmung mit den geltenden nationalen und internationalen Bestimmungen, Normen und Gesetzen einsetzen.
- Ein längerer Aufenthalt im Strahlungsbereich von UHF-Readern kann gesundheitsschädlich sein. Mindestabstand von > 0,35 m zur aktiv ausstrahlenden Fläche des UHF-Readers einhalten.
- Die Strahlung der UHF-Reader kann elektrisch gesteuerte medizinische Hilfsmittel beeinflussen. Erhöhten Abstand zu aktiven Strahlungsquellen bis hin zur maximalen Sendereichweite einhalten
- Default-Passwort des integrierten Webservers nach dem ersten Login ändern. Turck empfiehlt, ein sicheres Passwort zu verwenden.

3.3 Hinweise zur EU-Richtlinie 2014/53/EU (RED-Richtlinie)

Für eine sichere und bestimmungsgemäße Verwendung des Geräts folgende physische und logische Sicherheitsmaßnahmen gemäß DIN EN 18031-1 in der Umgebung sicherstellen:

- Zugangssteuerung: Nur autorisierten Personen, Geräten oder Diensten den Zugriff auf sicherheitsrelevante Daten und Einstellungen ermöglichen. Insbesondere kryptographische Schlüssel im Gerät besonders schützen.
- Authentifizierung: Den Zugang zu sicherheitsrelevanten Daten und Einstellungen durch geeignete Authentisierungsmechanismen verwalten. Dies umfasst auch die regelmäßige Überprüfung und Anpassung von Passwörtern und anderen Authentifikationsmethoden.
- Firmware-Management: Regelmäßig die Verfügbarkeit neuer Firmware-Versionen unter www.turck.com prüfen und Aktualisierungen zeitnah durchführen. Firmware-Updates durch den Vergleich mit den auf der Turck-Webseite bereitgestellten Hash-Werten auf ihre Integrität prüfen.
- Datenschutz und Kommunikation: Die im Gerät gespeicherten Daten hinsichtlich Integrität und Vertraulichkeit schützen. Kommunikation mit dem Gerät gegen Manipulation, unbefugten Zugriff und Abhören sichern.
- Angriffsschutz: Maßnahmen ergreifen, um erfolgreiche Replay-, Denial-of-Service- oder Brute-Force-Angriffe zu verhindern.
- Schwachstellenmanagement: Sicherstellen, dass bekannte Sicherheitslücken nicht ausgenutzt werden können.
- Schnittstellenkontrolle: Ausschließlich valide und autorisierte Daten an die Schnittstellen des Geräts senden.

4 Produktbeschreibung

Die Geräte sind in einem Aluminiumgehäuse in Schutzart IP67 ausgeführt. Die aktive Fläche besteht aus Kunststoff. Zur Verfügung stehen Geräte mit integrierter Antenne (Q300) oder zum Anschluss externer Antennen (Q180). Beide Gerätevarianten eignen sich zum Anschluss von bis zu vier externen, passiven UHF-RFID-Antennen.

Die Anschlüsse für das Ethernet und für digitale I/Os sind als M12-Buchsen ausgeführt. Zum Anschluss an die Spannungsversorgung besitzt das Gerät einen M12-Steckverbinder. Außerdem sind Anschlüsse für bis zu vier externe Antennen verfügbar.

4.1 Geräteübersicht

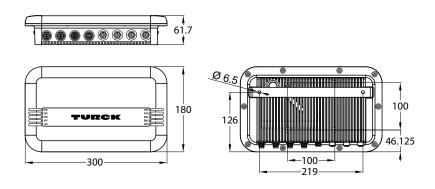


Abb. 1: Abmessungen – TN-UHF-Q180L300...

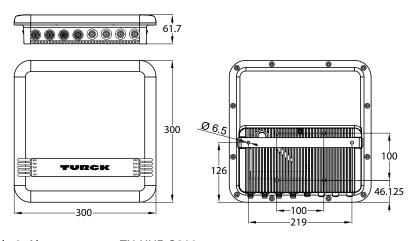


Abb. 2: Abmessungen – TN-UHF-Q300...

4.1.1 Anzeigeelemente

Das Gerät verfügt über folgende LED-Anzeigen:

- Versorgungsspannung
- Sammel- und Busfehler
- Status
- Diagnose

Zusätzlich kann über Software-Tools ein akustisches Signal eingestellt werden.

4.2 Eigenschaften und Merkmale

- Integrierter OPC-UA-Server standardisiert gemäß AutoID Companion Specification
- Abrufen der Daten über OPC-UA-Clients
- Universelles Interface bietet Interoperabilität
- Unterstützt Sicherheitsmechanismen und Authentifizierung
- Quaderförmig, Höhe 180 mm bzw. 300 mm
- Aktive Fläche vorn, UV-beständig
- Vier Anschlüsse für passive UHF-RFID-Antennen
- Vier konfigurierbare digitale Kanäle als PNP-Eingänge und/oder Ausgänge mit 0,5 A
- 2 W (ERP) maximale Ausgangsleistung
- Steuerungsnahe Integration an SPS-Systeme ohne speziellen Funktionsbaustein möglich
- Integrierter Webserver
- LED-Anzeigen und -Diagnosen

4.3 Funktionsprinzip

Die Reader dienen zum berührungslosen Datenaustausch mit Datenträgern. Dazu sendet die Steuerung über das Interface Befehle und Daten an den Reader und erhält die entsprechenden Antwortdaten vom Reader zurück. Beispiele für Befehle sind das Auslesen der IDs aller RFID-Datenträger im Lesebereich oder das Beschreiben eines RFID-Datenträgers mit einem bestimmten Produktionsdatum. Zur Kommunikation mit dem Datenträger werden die Daten vom Reader codiert und über ein elektromagnetisches Feld übertragen, das die Datenträger gleichzeitig auch mit Energie versorgt.

Ein Reader enthält einen Sender und einen Empfänger, eine Schnittstelle zum Interface und ein Kopplungselement (Spulen- bzw. Dipol-Antenne) für die Kommunikation mit dem Datenträger. Als Übertragungsverfahren zwischen Reader und Datenträger wird bei Geräten für den UHF-Bereich die elektromagnetische Wellenausbreitung genutzt.

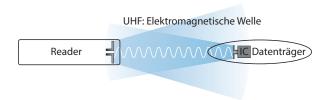


Abb. 3: Funktionsprinzip UHF-RFID

Die Antenne des Readers erzeugt elektromagnetische Wellen. Dadurch entsteht als sogenannte Luftschnittstelle ein Übertragungsfenster, in dem der Datenaustausch mit dem Datenträger stattfindet. Die Größe des Übertragungsfensters ist von den jeweils kombinierten Readern und Datenträgern sowie von den Umgebungsbedingungen abhängig.

Jeder Reader ist in der Lage, mit einer Reihe von Datenträgern zu kommunizieren. Dazu müssen Reader und Datenträger jeweils im gleichen Frequenzbereich arbeiten. Die Reichweiten der Geräte reichen – in Abhängigkeit von Leistung und Frequenz – von wenigen Millimetern bis zu mehreren Metern. Die angegebenen maximalen Schreib-Lese-Abstände stellen Werte unter Laborbedingungen ohne Materialbeeinflussung dar. Durch Bauteiltoleranzen, Einbausituation in der Applikation, Umgebungsbedingungen und die Beeinflussung durch Materialien (insbesondere Metall und Flüssigkeiten) können die erreichbaren Abstände abweichen.

Über die OPC-UA-Schnittstelle wird der Reader via Ethernet an das übergeordnete System angeschlossen. Über die RFID-Schnittstellen lassen sich bis zu vier zusätzliche Antennen anschließen. Im laufenden Betrieb werden Prozessdaten zwischen dem übergeordneten System und dem RFID-System ausgetauscht. Dazu kommuniziert der integrierte OPC-UA-Server des Readers mit dem OPC-UA-Client des übergeordneten Systems.

4.4 Funktionen und Betriebsarten

4.4.1 Arbeitsfrequenz

Das Turck-UHF-System arbeitet mit länderspezifischen Arbeitsfrequenzen zwischen den Datenträgern und den Readern. Diese länderspezifischen Arbeitsfrequenzen bei UHF ergeben sich aus der individuellen Vergabe von Frequenzbereichen durch die jeweiligen nationalen Regulierungsbehörden.

Die Arbeitsfrequenz der Geräte im UHF-Band beträgt beispielsweise für Europa 865,6... 867,6 MHz und für die USA 902...928 MHz. Die UHF-Reader sind nur in den jeweils vorgesehenen Regionen einsetzbar und dürfen außerhalb dieser Regionen nicht in Betrieb genommen werden. Da UHF-Datenträger keine eigenen Funkwellen abstrahlen, dürfen sie weltweit verwendet werden.

Turck bietet Datenträgervarianten an, die speziell auf länderspezifische Bänder abgestimmt und optimiert sind, um eine möglichst große Kommunikationsreichweite zu erzielen. Alternativ sind auch breitbandige Mehrbereichsdatenträger für internationale Einsätze verfügbar.

Die unterschiedlichen Turck-Reader unterstützen folgende Arbeitsfrequenzen:

- 920...926 MHz (z. B. Australien und Neuseeland)
- 915...928 MHz (z. B. Brasilien)
- 920,5...924,5 MHz (z. B. China und Thailand)
- 865,6...867,6 MHz (z. B. Europa, Türkei, Indien)
- 916,7...920,9 MHz (z. B. Japan)
- 917...920,8 MHz (z. B. Korea)
- 919...923 MHz (z. B. Malaysia)
- 902...928 MHz (z. B. USA, Kanada, Mexiko)
- 920...925 MHz (z. B. Singapur)

Die länderspezifischen Details bei UHF, wie Frequenzbereich, Leistung und der Status von evtl. nationalen Regulierungen, sind im Internet verfügbar unter:

https://www.gs1.org/docs/epc/uhf_regulations.pdf

Um weitergehende Informationen zu erhalten, wenden Sie sich bitte an die Regulierungsbehörden des Landes, in dem Sie das UHF-RFID-System einsetzen möchten.

HF-RFID-Systeme können mit UHF-RFID-Systemen parallel in einer Anlage betrieben werden.

4.4.2 Kompatible OPC-UA-Clients

Das Gerät ist mit allen OPC-UA-Clients kompatibel, die Methodenausführung und das Datenmodell gemäß AutoID Companion Specification unterstützen. Beispielsweise können die folgenden OPC-UA-Clients verwendet werden:

- UAExpert Unified Automation
- dataFeed OPC UA Client Softing
- OPC Router Inray

Zusätzlich können mit jedem OPC-UA-Client über das Setzen von Variablen die RFID-Daten erfasst werden (ScanStart und Read), ohne dass eine Methodenausführung vom Client unterstützt werden muss.

Die Programmierung eines spezifischen OPC-UA-Clients ist mit dem OPC-UA-Stack der OPC Foundation möglich. Auch der Einsatz von OPC-UA-SDKs anderer Hersteller ist möglich. Turck empfiehlt den Einsatz des ".NET based OPC UA Client/Server SDK". Eine Übersicht der verfügbaren Clients bietet die OPC Foundation.

4.4.3 Authentifizierung und Verschlüsselung

Für eine sichere Kommunikation bietet die OPC-UA-Schnittstelle eine Authentifizierung durch das Signieren von Zertifikaten und die Verschlüsselung von Nachrichten auf Transportebene. Der OPC-UA-Server des Geräts verfügt über die Möglichkeit zur Authentifizierung und Autorisierung auf Applikationsebene durch Benutzerlevel und Passwörter.

4.4.4 RFID-Befehle (Methoden)

Die RFID-Funktionalität ist nach der AutoID Companion Specification definiert. Eine vollständige Beschreibung der Methoden entnehmen Sie der Spezifikation. Die Methoden sind außerdem im Kapitel "Einstellen" beschrieben.

Mit dem Gerät lassen sich die folgenden Methoden und Funktionen ausführen:

- Scan
- ScanStart
- ScanStop
- ReadTag
- WriteTag
- KillTag
- LockTag
- SetTagPassword
- WriteTagID

5 Montieren

Das Gerät ist zur Montage an einer Halterung nach VESA 100×100 vorgesehen. Für die Montage verfügt das Gerät über vier M4-Gewindebohrungen mit einem Abstand von 100 mm (horizontal und vertikal). Die max. Länge der Schrauben beträgt 8 mm zzgl. der Stärke der VESA-Halterung. Die Geräte können in beliebiger Ausrichtung montiert werden.

► Gerät mit vier M4-Schrauben an einer Halterung gemäß VESA 100 × 100 befestigen.

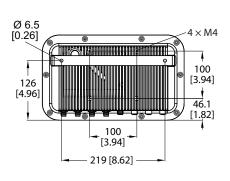
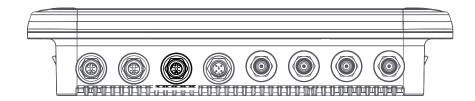


Abb. 4: Rückansicht – TN-UHF-Q180...


Abb. 5: Rückansicht – TN-UHF-Q300...

6 Anschließen

6.1 Geräte an Ethernet anschließen

Zum Anschluss an ein Ethernet-System verfügt das Gerät über eine 4-polige M12-Buchse.

Abb. 6: M12-Ethernet-Steckverbinder

Gerät gemäß unten stehender Pinbelegung an Ethernet anschließen (max. Anzugsdrehmoment 0,8 Nm).

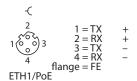


Abb. 7: Pinbelegung Ethernet-Anschlüsse

HINWEIS

Bei PoE wird die Versorgungsspannung über PoE Mode A mit 4-adrigen Leitungen übertragen.

Der Betrieb von PoE und 24 VDC gleichzeitig wird nicht unterstützt.

6.2 Versorgungsspannung anschließen

Zum Anschluss an die Versorgungsspannung verfügt das Gerät über einen 5-poligen M12-Steckverbinder.

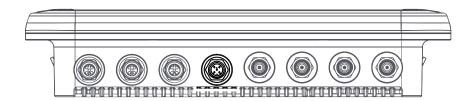


Abb. 8: M12-Steckverbinder zum Anschluss an die Versorgungsspannung

► Gerät gemäß unten stehender Pinbelegung an die Versorgungsspannung anschließen (max. Anzugsdrehmoment 0,8 Nm).

Abb. 9: Pinbelegung Versorgungsspannungs-Anschlüsse

6.3 Digitale Sensoren und Aktuatoren anschließen

Zum Anschluss von digitalen Sensoren und Aktuatoren verfügt das Gerät über zwei 5-polige M12-Steckverbinder.

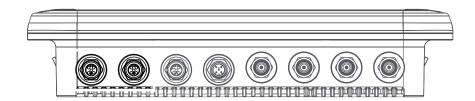


Abb. 10: M12-Steckverbinder zum Anschluss von digitalen Sensoren und Aktuatoren

HINWEIS

Beim Betrieb über PoE (Power over Ethernet) können die digitalen Kanäle nicht als Ausgänge genutzt werden.

Sensoren und Aktuatoren gemäß unten stehender Pinbelegung an das Gerät anschließen (max. Anzugsdrehmoment 0,8 Nm).

Sensor 4 BK _ or Sensor or 3 BU Actuator -C DXP0...DXP3

Abb. 11: Anschlüsse für digitale Sensoren und Abb. 12: Anschlüsse für digitale Sensoren und Aktuatoren – Pinbelegung

Aktuatoren - Anschlussbild

6.4 Externe Antennen anschließen

Zum Anschluss von bis zu vier externen Antennen verfügt das Gerät über vier RP-TNC-Buchsen. Die Eingangsimpedanz beträgt 50 Ω .

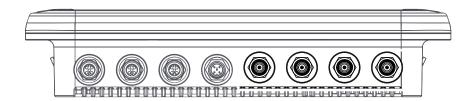


Abb. 13: RP-TNC-Buchsen zum Anschluss externer Antennen

Externe Antennen mit einem Antennenkabel RP-TNC an das Gerät anschließen (max. Anzugsdrehmoment 0,8 Nm).

7 In Betrieb nehmen

7.1 Reader mit dem Webserver parametrieren

Über den integrierten Webserver können die Geräte eingestellt und Befehle an die Geräte geschickt werden. Um den Webserver mit einem PC öffnen zu können, müssen sich das Gerät und der PC im gleichen IP-Netzwerk befinden.

7.1.1 Webserver öffnen

Der Webserver lässt sich über einen Webbrowser oder über die Turck Automation Suite (TAS) öffnen. Der Aufruf des Webservers über TAS ist im Abschnitt "Netzwerk-Einstellungen anpassen" beschrieben.

Im Auslieferungszustand ist im Gerät die IP-Adresse 192.168.1.254 hinterlegt. Um den Webserver über einen Webbrowser zu öffnen, http://192.168.1.254 in die Adressleiste des Webbrowsers eingeben.

7.1.2 Einstellungen im Webserver bearbeiten

Zur Bearbeitung von Einstellungen über den Webserver ist ein Login erforderlich. Im Auslieferungszustand lautet das Passwort "password".

HINWEIS

Turck empfiehlt, das Passwort aus Sicherheitsgründen nach dem ersten Login zu ändern.

- Webserver des Geräts öffnen.
- Username und Password eingeben.
- Login klicken.

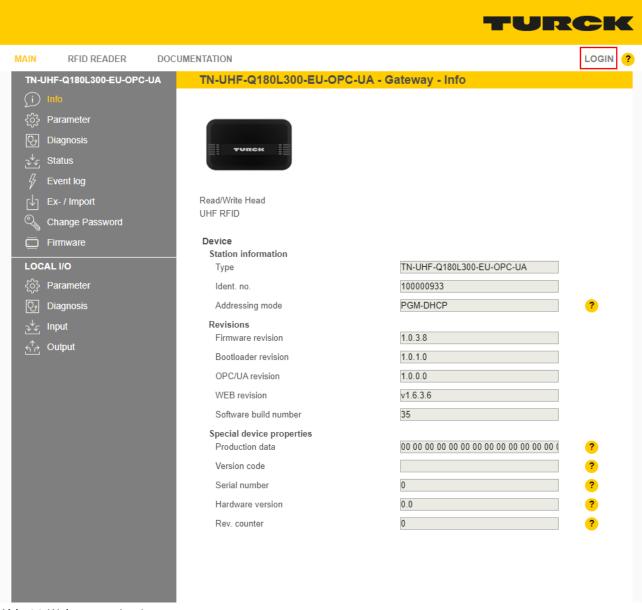


Abb. 14: Webserver - Login

Nach dem ersten Login das Passwort ändern.

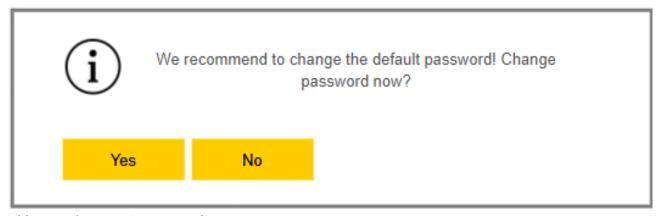


Abb. 15: Webserver – Passwort ändern

- ⇒ Nach dem Login wird die Startseite mit den Geräteinformationen angezeigt.
- ▶ RFID READER anklicken, um die Geräteparameter anzuzeigen und einzustellen.

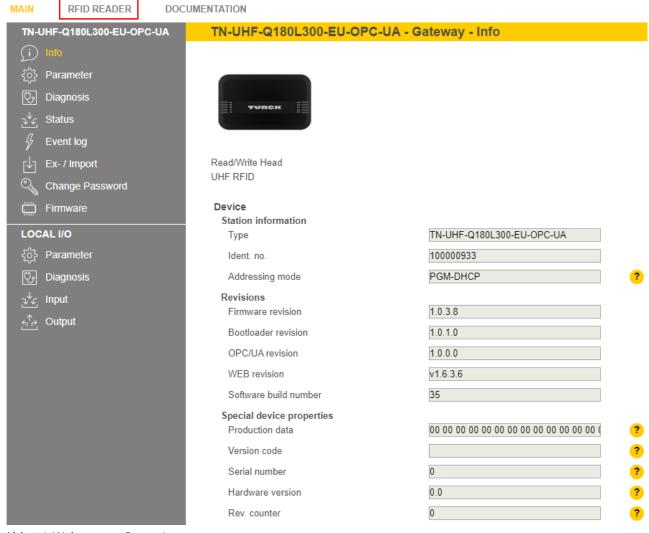


Abb. 16: Webserver – Startseite

In der Navigationsleiste am linken Bildrand Parameter anklicken.

MAIN RFID READER DOCUMENTATION

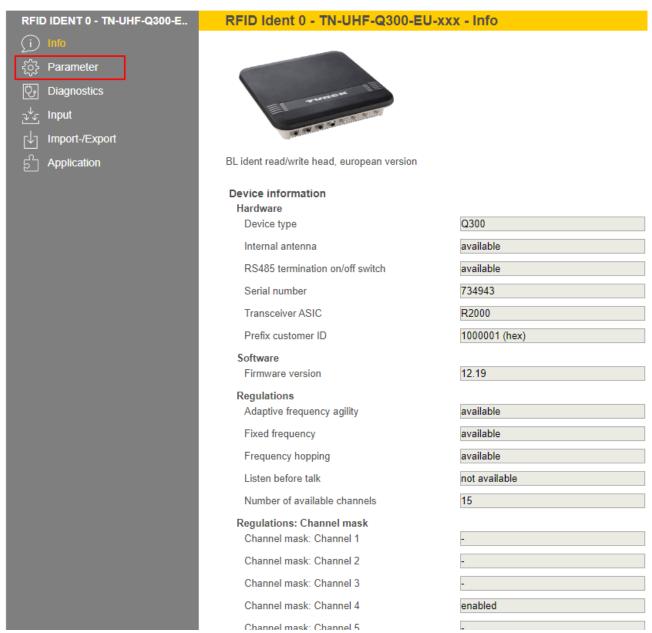


Abb. 17: Webserver - RFID Reader - Info

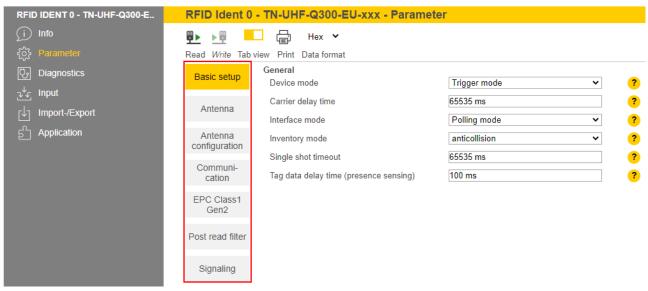


Abb. 18: Webserver - RFID Reader - Parameter

Die folgenden Setup-Fenster können aufgerufen werden:

- Basic setup
- Antenna
- Antenna configuration
- Communication
- EPC Class1 Gen2
- Post read filter
- Signaling
- ▶ Parameter setzen: Write klicken.

HINWEIS

Während ein Parameter gesetzt wird, leuchtet die LED ERR rot und wechselt automatisch zu grün.

7.2 Reader mit dem Webserver testen

Über die Funktion **Application** können die Geräte mit dem Webserver getestet werden.

▶ RFID READER → Application anklicken

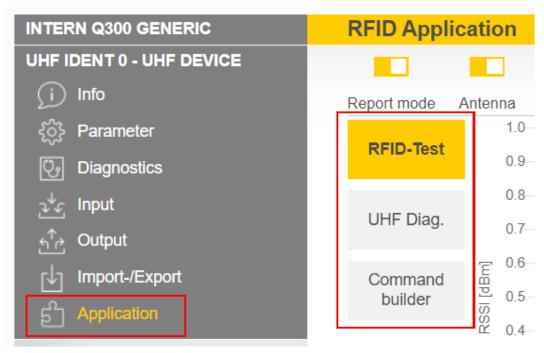


Abb. 19: Webserver - RFID Application

Im Bereich Application stehen der RFID-Test, die UHF-Diagnose und der Command builder zur Verfügung:

- RFID-Test: Wenn der Trigger auf ON steht, wird das RF-Feld aktiviert und Datenträger können gelesen werden.
- UHF-Diagnose: Die Diagramme zeigen Interferenzfrequenzen aller verwendeten Kanäle.
- Command builder: Die Verwendung des Command builders ist dem Turck Support vorbehalten und dient nicht dazu, das Gerät zu parametrieren oder zu betreiben.

Über den **RFID-Test** können EPC-Informationen von Datenträgern im Singletag- und Multitag-Betrieb angezeigt und ausgelesen werden. Die empfangenen RSSI-Werte werden als Kurve mit zeitlichem Verlauf angezeigt.

Abb. 20: Beispiel RFID-Test: Erfassen eines Datenträgers mit zeitlichem Verlauf der empfangenen RSSI-Werte und der Anzahl der Lesungen

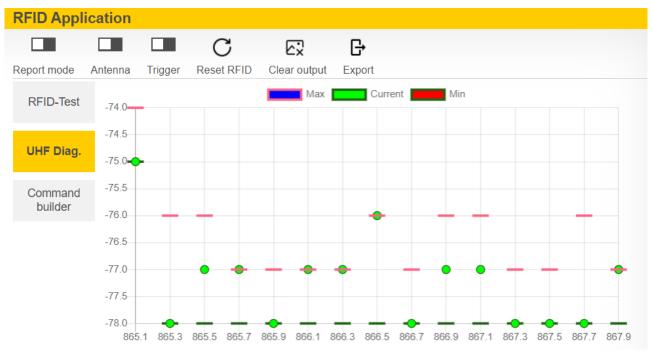


Abb. 21: Beispiel UHF-Diagnose: Empfangener Leistungspegel pro Kanal

7.3 Netzwerk-Einstellungen anpassen

7.3.1 Netzwerk-Einstellungen über TAS (Turck Automation Suite) anpassen

Im Auslieferungszustand besitzt das Gerät die IP-Adresse 192.168.1.254. Die IP-Adresse kann über TAS (Turck Automation Suite) eingestellt werden. TAS steht unter www.turck.com kostenlos zur Verfügung.

- ▶ Gerät über die Ethernet-Schnittstelle mit einem PC verbinden.
- ► TAS öffnen.
- ▶ Netzwerk scannen klicken.

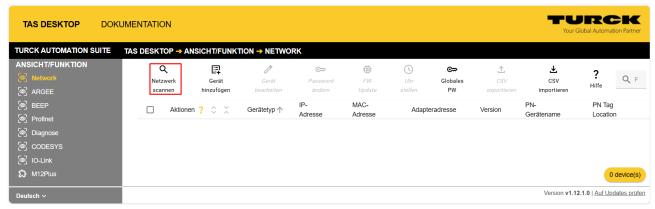


Abb. 22: Startbildschirm in TAS

⇒ TAS zeigt die angeschlossenenen Geräte an.

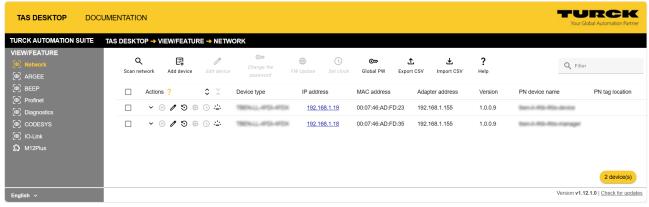


Abb. 23: Gefundene Geräte in TAS

- ► Gewünschtes Gerät markieren (Checkbox).
- ► Gerät bearbeiten klicken.

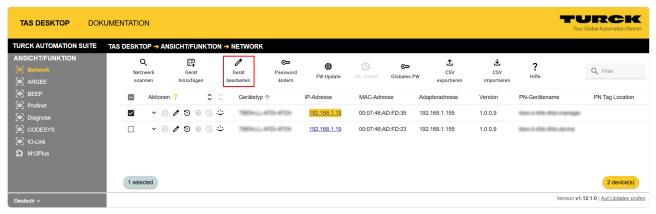


Abb. 24: Gerät auswählen in TAS

HINWEIS

Durch einen Klick auf die IP-Adresse des Geräts kann die Konfigurationsansicht des Geräts wahlweise in TAS oder auf der Geräte-Website geöffnet werden.

Gerätepasswort eingeben und Anmelden klicken. Im Auslieferungszustand ist das Passwort "password".

Hinweis: Turck empfiehlt das Passwort nach dem ersten Login zu ändern.

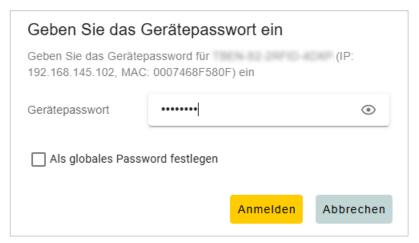


Abb. 25: Gerätepasswort eingeben

- ▶ PN-Gerätenamen, IP-Adresse sowie ggf. Standard-Gateway, Subnetzmaske und PN-Tag-Location ändern.
- ▶ Änderungen mit einem Klick auf Übernehmen speichern.

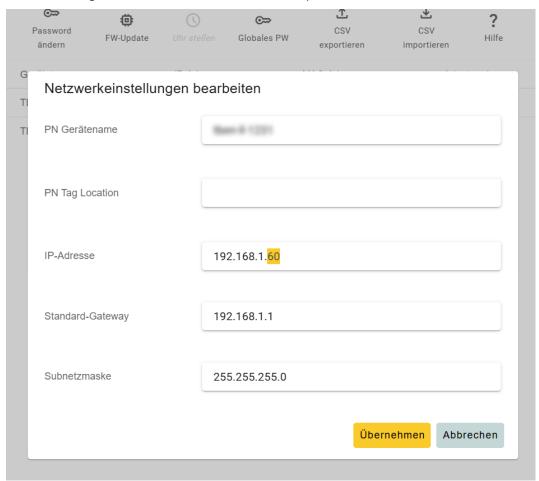


Abb. 26: Netzwerkeinstellungen ändern in TAS

7.3.2 Netzwerk-Einstellungen über den Webserver anpassen

HINWEIS

Um die IP-Adresse über den Webserver einstellen zu können, muss sich das Gerät im PGM-Modus befinden.

- Webserver öffnen.
- Als Administrator auf dem Gerät einloggen.
- ▶ Parameter → Network anklicken.
- ▶ IP-Adresse und ggf. Subnetzmaske sowie Default-Gateway ändern.
- ► Neue IP-Adresse, Subnetzmaske und Default-Gateway über SET NETWORK CONFIGURATION in das Gerät schreiben.

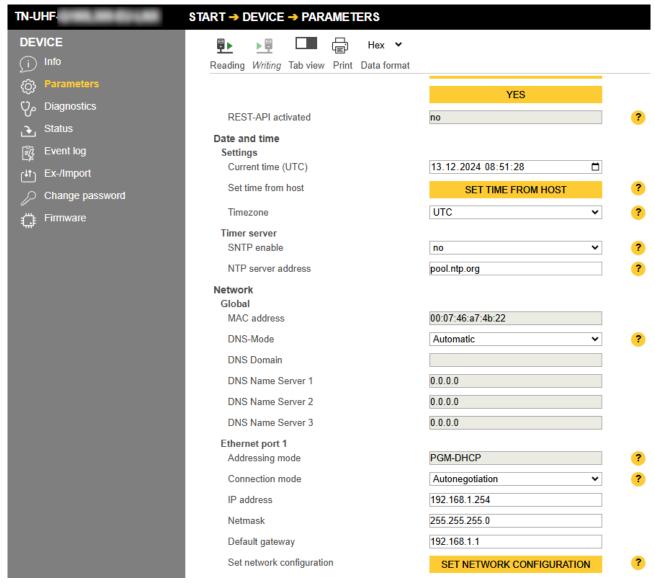


Abb. 27: Netzwerk-Einstellungen über den Webserver anpassen

7.4 Gerät über den Webserver für die Inbetriebnahme vorbereiten

HINWEIS

Der Webserver zeigt immer alle Einstellmöglichkeiten an. Alle Werte werden als Dezimalzahlen angezeigt.

Über den integrierten Webserver kann das Gerät eingestellt und Befehle an das Gerät geschickt werden. Um den Webserver mit einem PC öffnen zu können, müssen sich das Gerät und der PC im gleichen IP-Netzwerk befinden.

7.4.1 Webserver öffnen und Einstellungen bearbeiten

Der Webserver lässt sich über einen Webbrowser oder über die Turck Automation Suite (TAS) öffnen. Der Aufruf des Webservers über TAS ist im Abschnitt "Netzwerk-Einstellungen anpassen" beschrieben.

Auf der Startseite werden Statusinformationen und Netzwerkeinstellungen angezeigt.

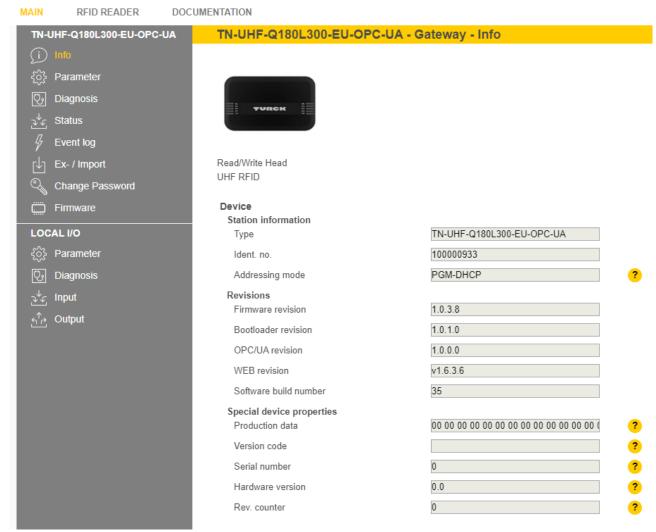


Abb. 28: Webserver - Startseite

Zur Bearbeitung von Einstellungen über den Webserver ist ein Login erforderlich. Im Auslieferungszustand lautet das Passwort "password".

HINWEIS

Turck empfiehlt, das Passwort aus Sicherheitsgründen nach dem ersten Login zu ändern.

- Webserver des Geräts öffnen.
- ▶ Username und Password eingeben.
- ▶ Login klicken.

Nach dem Login ist ein Schreibzugriff auf die Parameterdaten des Moduls möglich.

Für den Zugriff auf die OPC-UA-spezifischen Parameter muss das OPC-UA-Root-Passwort eingegeben werden. Im Auslieferungszustand lautet das Passwort "Turck".

ACHTUNG

Unzureichend gesicherte Geräte

Unberechtigter Zugriff auf sensible Daten

- ▶ Passwort nach dem ersten Login ändern. Turck empfiehlt, ein sicheres Passwort zu verwenden.
- ▶ Parameter → OPC UA: Passwort in das Feld OPC UA root password eingeben.
- ► AUTHENTICATE klicken.

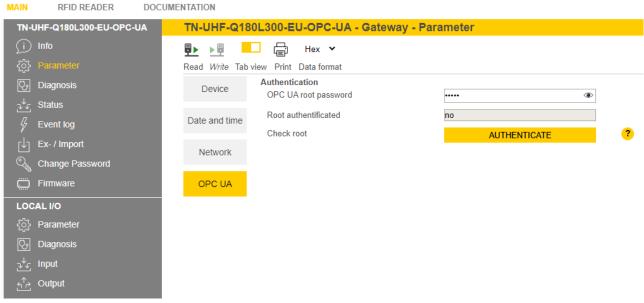


Abb. 29: OPC-UA-Root-Passwort eingeben

⇒ Die Parameter für die OPC-UA-spezifische Konfiguration werden eingeblendet.

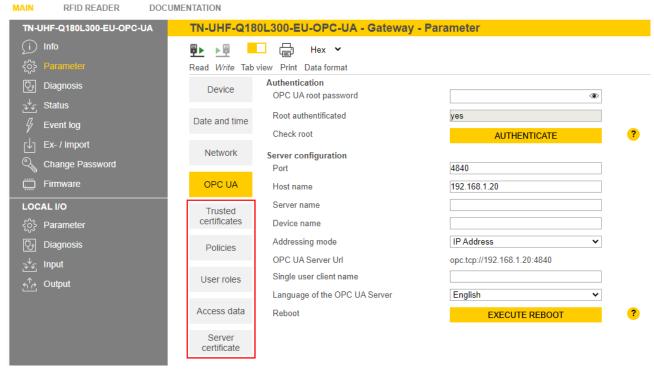


Abb. 30: Parameter für die OPC-UA-spezifische Konfiguration

Das Root-Passwort kann unter Access data geändert werden.

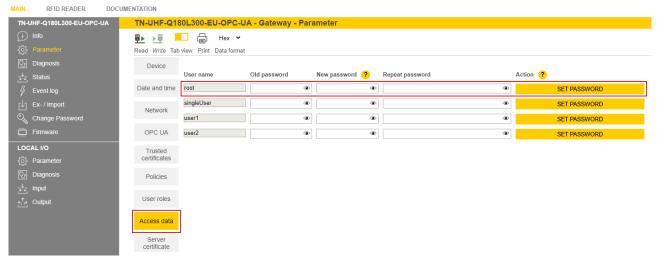


Abb. 31: Root-Passwort ändern

7.4.2 Verbindung zwischen OPC-UA-Server und OPC-UA-Client aufbauen

Im folgenden Beispiel wird UAExpert als OPC-UA-Client verwendet.

- ▶ OPC-UA-Server im verwendeten OPC-UA-Client hinzufügen.
- ► Im folgenden Fenster die OPC-UA-Server-URL eintragen und die gewünschten **Security Settings** auswählen.
- ► Eingaben mit **OK** bestätigen.

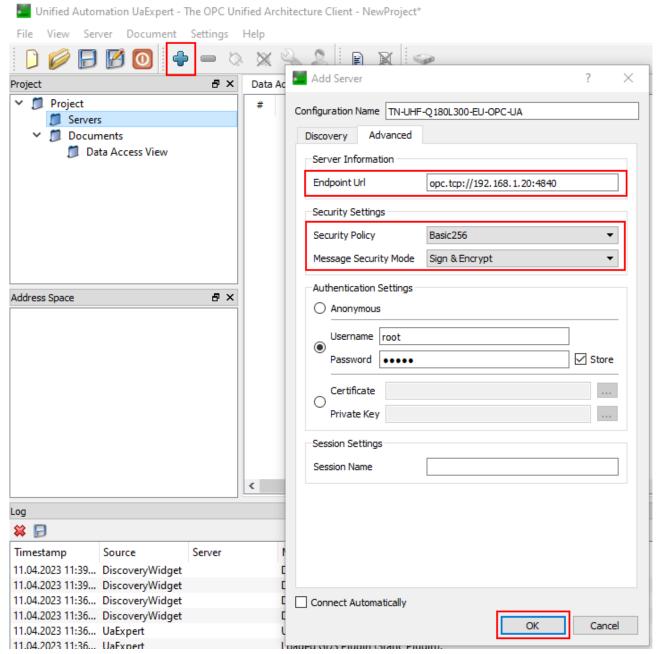


Abb. 32: OPC-UA-Server-URL eintragen und Security Settings wählen

⇒ Der OPC-UA-Server wird dem Projektbaum hinzugefügt.

- ► Im Projektbaum Rechtsklick auf Server ausführen.
- ► Connect klicken.

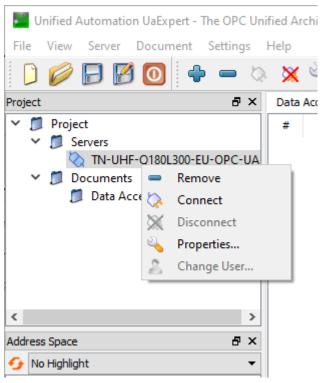


Abb. 33: OPC-UA-Server verbinden

- ⇒ Der OPC-UA-Client fragt eine Verbindung und ein Sicherheitszertifikat beim Server an. Wenn eine Verschlüsselung aktiviert ist, dann erscheint das Sicherheitszertifikat im Webserver unter Parameter → Rejected Certificates.
- ► TRUST klicken, um das Sicherheitszertifikat zur Liste der vertauenswürdigen Zertifikate hinzuzufügen.

Abb. 34: Sicherheitszertifikat vertrauen

- ▶ Im OPC-UA-Client Rechtsklick auf den Server ausführen und **Connect** klicken.
- Die Verbindung zwischen OPC-UA-Server und OPC-UA-Client ist hergestellt und der Address Space im Client ist aufgebaut.

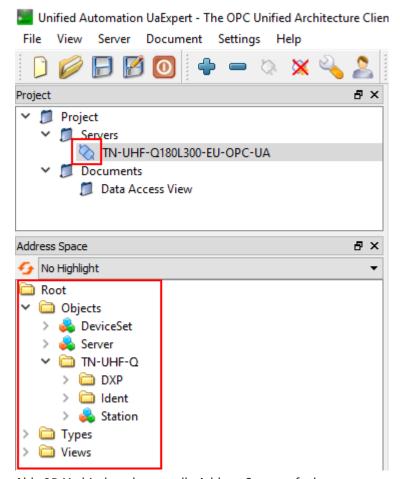


Abb. 35: Verbindung hergestellt, Address Space aufgebaut

7.4.3 Sicherheitszertifikate validieren

Sicherheitszertifikate müssen vor der Kommunikation zunächst vom Server akzeptiert werden. Bei einem Verbindungsaufbau vom Client zum Server über eine gesicherte Verbindung schickt der OPC-UA-Client sein Zertifikat mit. Für jede Sicherheitsstufe wird ein eigenes Zertifikat mitgeschickt. Die Sicherheitszertifikate lassen sich über den Webserver validieren.

Wenn der OPC-UA-Client beim Verbindungsaufbau sein Sicherheitszertifikat mitschickt, dann erscheint das Sicherheitszertifikat im Webserver unter **Parameter** → **Rejected certificates**.

- ► Sicherheitszertifikat vertrauen: TRUST klicken.
- ⇒ Das Sicherheitszertifikat wird der Liste der vertrauenswürdigen Zertifikate hinzugefügt.

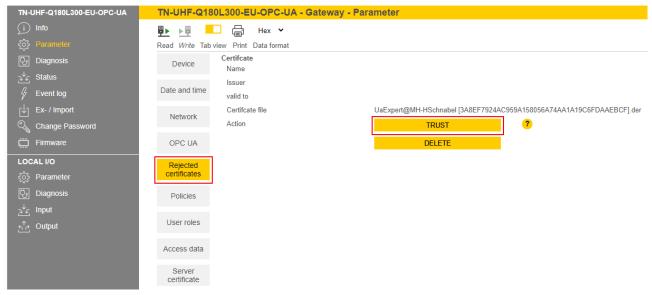


Abb. 36: Sicherheitszertifikat vertrauen

Unter **Trusted certificates** werden die vertrauenswürdigen Zertifikate aufgeführt und können mit einem Klick auf **REJECT** abgelehnt werden.



Abb. 37: Zertifikat ablehnen

Spezifisches Sicherheitszertifikat erstellen

Über **Update own server certificate** kann ein spezifisches Sicherheitszertifikat erstellt werden. Die OPC-UA-Clients müssen das neu generierte Zertifikat erneut akzeptieren. Bei der Generierung werden die aktuelle IP-Adresse und der Host-Name automatisch in das Zertifikat aufgenommen. Das Zertifikat lässt sich auch über einen OPC-UA-Client bearbeiten, wenn die höchste Sicherheitsstufe aktiviert ist.

▶ Spezifisches Sicherheitszertifikat erstellen: Parameter → Server certificate → UPDATE CERTIFICATE klicken.

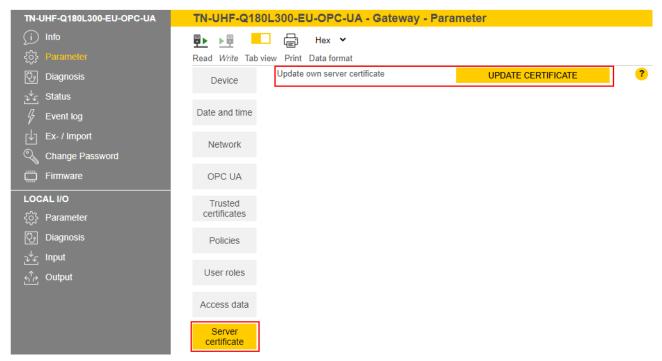


Abb. 38: Spezifisches Sicherheitszertifikat erstellen

7.4.4 Einstellungen für die OPC-UA-Kommunikation anpassen – Set Endpoints

HINWEIS

Änderungen der Einstellungen werden nach einem Spannungs-Reset übernommen.

Sicherheitseinstellungen ändern

Das Gerät verfügt über drei Sicherheitsstufen für die OPC-UA-Kommunikation. Für die Sicherheitsstufen "Sign" und "Sign & Encrypt" muss das Sicherheitszertifikat im Webserver bestätigt werden.

Sicherheitsstufe	Beschreibung
None	kein Schutz
Sign	Kommunikation mit Sicherheitszertifikat, keine Verschlüsselung
Sign & Encrypt	Kommunikation mit Sicherheitszertifikat, Verschlüsselung

Unter **Parameter** → **Policies** können die Sicherheitsstufen für die einzelnen SecurityPolicies eingestellt werden. Die SecurityPolicy beschreibt den Algorithmentyp und die Schlüssellänge, die für den SecureChannel zwischen der Client- und der Serveranwendung benutzt werden.

Wenn Anonymus aktiviert ist, ist eine Verbindung ohne User-Anmeldung erlaubt.

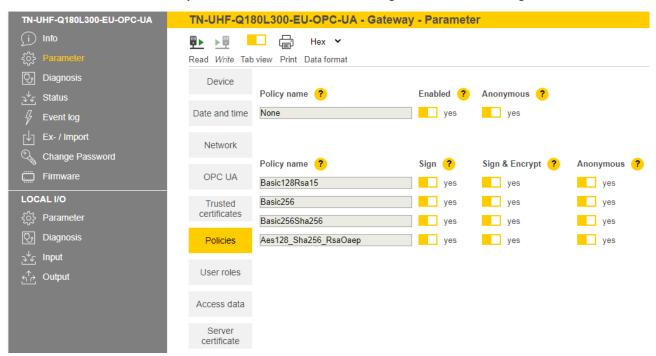


Abb. 39: Sicherheitsstufen für SecurityPolicies einstellen

Berechtigungen erteilen

Unter **Parameter** → **User roles** können den Nutzern (Anonymus, root, singleUser, user1, user2) unterschiedliche Rechte zugewiesen werden.

- **Observer**: Berechtigung zum Durchsuchen, Lesen und Empfangen von Events
- **Operator**: Berechtigung zum Durchsuchen, Lesen, Schreiben, Empfangen von Events und Aufrufen von Methoden
- **Engineer**: Berechtigung zum Durchsuchen und Lesen sowie zur Konfiguration sicherheitsrelevanter Parameter und Methoden (z. B. SetTagPassword, LockTag)
- Administrator: alle Berechtigungen
- **Single user**: Berechtigung zur Nutzung von Variablen für limitierte Clients (ScanActive, ScanSettings-Variablen) (nur Nutzer singleUser)

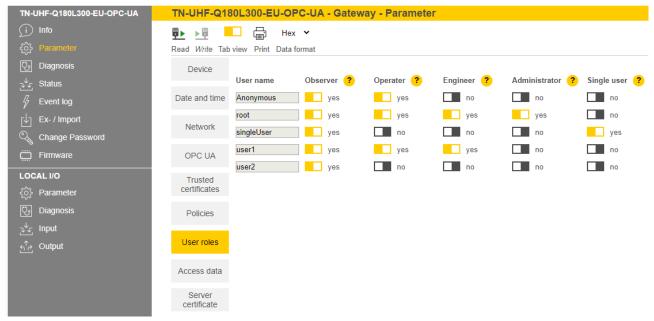


Abb. 40: User roles

Endpoints konfigurieren – Server configuration

Im Bereich **Parameter** \rightarrow **OPC UA** \rightarrow **Server configuration** können u. a. die folgenden Einstellungen geändert werden:

- Port
- Host-Name
- Name des OPC-UA-Servers

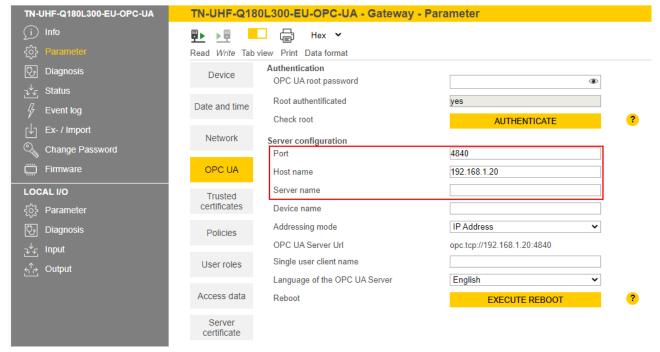


Abb. 41: Server configuration

Namensauflösung der OPC-UA-Server-Endpoints ändern – Choose NodeName for Endpoint Resolution

Um den Endpoint eindeutig identifizieren zu können, überprüft der OPC-UA-Client den Hostnamen zur angegebenen IP-Adresse. Wenn in einem Netzwerk DHCP und DNS nicht zur Verfügung stehen, können Identifizierungsprobleme auftreten. Um Identifizierungsprobleme zu vermeiden, kann dem Server eine feste IP-Adresse zur Namensauflösung zugeteilt oder der Hostname statisch gesetzt werden.

In Netzwerken mit DHCP-Server kann der Hostname über die "NodeName"-Variable gesetzt werden.

In lokalen Netzwerken ohne DHCP kann der Server den DNS-Namen über mDNS bekannt geben. Hierbei fügt Avahi (Linux-Netzwerkdienst) dem Hostnamen den Suffix "local" hinzu. In Windows-System kann zur Namensauflösung der Dienst "Bonjour" verwendet werden.

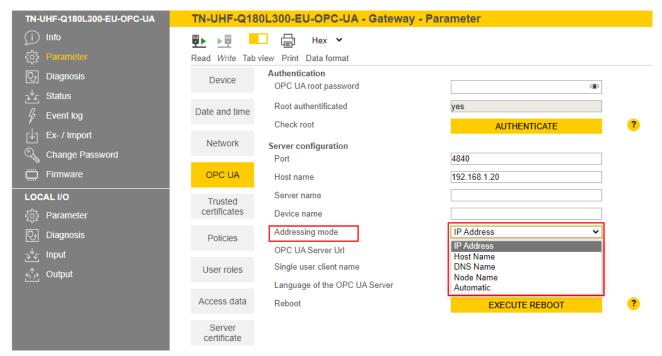


Abb. 42: Namensauflösung für Server-Endpoints ändern

Spracheinstellung des OPC-UA-Servers ändern – Language of the OPC UA Server

OPC UA gibt für jedes Objekt die Möglichkeit einer Beschreibung ("Description"). Unter Parameter \rightarrow OPC UA \rightarrow Language of the OPC UA Server kann die Sprache der Beschreibung eingestellt werden. Verfügbare Sprachen sind Deutsch und Englisch.

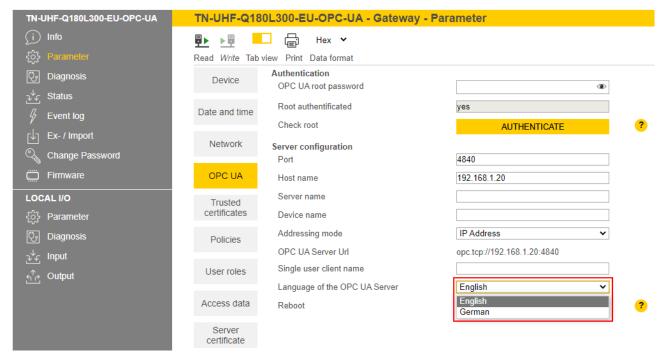


Abb. 43: Spracheinstellung des OPC-UA-Servers ändern

7.4.5 OPC-UA-Passwort setzen

Für den Zugriff auf die OPC-UA-spezifischen Parameter muss das OPC-UA-Root-Passwort eingegeben werden. Im Auslieferungszustand lautet das Passwort "Turck".

ACHTUNG

Unzureichend gesicherte Geräte Unberechtigter Zugriff auf sensible Daten

- ▶ Passwort nach dem ersten Login ändern. Turck empfiehlt, ein sicheres Passwort zu verwenden.
- ▶ Parameter → OPC UA: Passwort in das Feld OPC UA root password eingeben.
- ► AUTHENTICATE klicken.

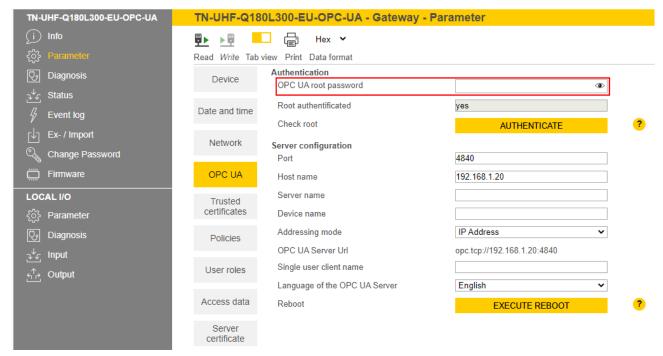


Abb. 44: OPC-UA-Root-Passwort eingeben

Für jeden Nutzer kann ein eigenes OPC-UA-Passwort vergeben und geändert werden. Die Default-Passwörter für die unterschiedlichen Nutzer entnehmen Sie der folgenden Tabelle:

Benutzer	Default-Passwort
root	Turck
user1	password
user2	password
singleUser	singlepassword

- ▶ Parameter → Access data
- In der Zeile des gewünschten Nutzers das alte Passwort eingeben.
- Neues Passwort eingeben.
- Neues Passwort wiederholen.
- ▶ Neues Passwort über **SET PASSWORD** in das Gerät schreiben.

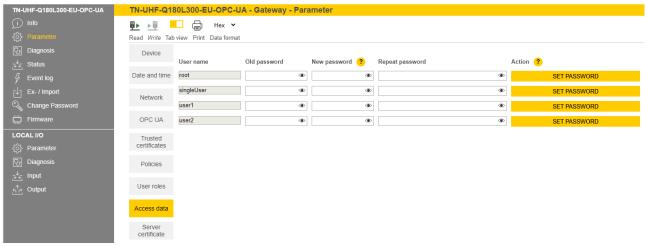


Abb. 45: Webserver – OPC-UA-Passwörter ändern

Passwort für den OPC-UA-Server zurücksetzen

Das Gerät lässt sich ohne Passwort über die F_Reset-Funktion zurücksetzen (Drehcodierschalter auf Schalterstellung 90, DIP-Schalter [MODE] auf Position 1). Alle weiteren Möglichkeiten zum vollständigen Reset auf Werkseinstellungen inkl. der OPC-UA-Passwörter werden blockiert.

7.4.6 OPC-UA-Client über ein SDK einrichten

Um den OPC-UA-Server des Geräts an einen OPC-UA-Client anbinden zu können, muss der OPC-UA-Client eingerichtet werden. Zur Einrichtung ist die folgende Software erforderlich:

- Client SDK, z. B. von www.unified-automation.com (für C++, .net, ANSI C oder Java)
- UaModeler, z. B. von www.unified-automation.com

Für das Client SDK muss kostenpflichtig eine Lizenz von www.unified-automation.com beantragt werden. Die mit der Software gelieferte Lizenz ist immer nur eine Stunde gültig.

Anwendungsrahmen erstellen

- Client SDK und UaModeler installieren.
- Entwicklungsumgebung starten und ein neues Projekt aufsetzen.

HINWEIS

Ein Beispiel zur Erstellung einer neuen Anwendung und erste Schritte finden Sie in der mitgelieferten Dokumentation des Client SDK.

- ▶ Beantragte Lizenz herunterladen und in das Projekt einbinden.
- ▶ Die strukturierten Datentypen mit dem UaModeler erstellen.

HINWEIS

Beispiele und weitere Informationen zum Umgang mit strukturierten Datentypen finden Sie in der mitgelieferten Dokumentation des UaModelers.

▶ Die im UaModeler erzeugten Daten in das Projekt im Client SDK einbinden.

8 Einstellen

8.1 Informationsmodell – Mapping

Das AutoID-Informationsmodell gliedert sich in Knoten, die wiederum Unterknoten enthalten können:

Knotenklasse	Beschreibung
Folder (Ordner)	allgemeine Sammlung
Object (Objekt)	Abbildung eines technischen Objekts
Property (Eigenschaft)	Beschreibung eines Objekts
Variable	Prozessdaten oder Statusangabe
Method (Methode)	Funktionale Abfrage mit Statusrückgabe (z. B. RFID-Befehle)

Im Informationsmodell sind die Geräte als Objekte definiert und wie folgt aufgebaut:

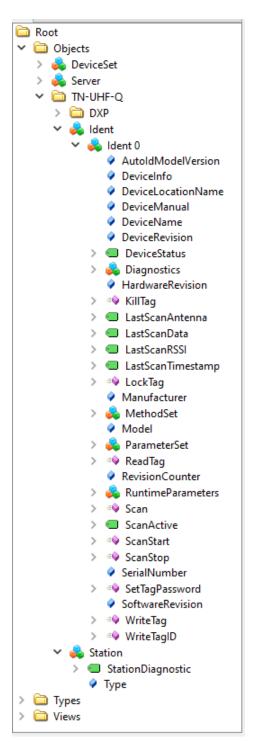


Abb. 46: Informationsmodell des RFID-Kanals Ident 0 – Beispiel: UA Expert

8.1.1 RFID-Kanäle – Mapping im Informationsmodell

Jedem angeschlossenen Schreib-Lese-Gerät ist ein Ident-Kanal zugeordnet. Das Objekt Ident 0 enthält Properties, Variablen und Methoden.

Properties – Eigenschaften

Property	Beschreibung	Beispiel
Autold Model Version	Version der AutoID-Spezifikation	1.01
DeviceInfo	RFID-Frequenzbereich (HF/UHF) des angeschlossenen Geräts	UHF
DeviceLocationName	-	-
DeviceManual	Link zur Betriebsanleitung des angeschlossenen Geräts	www.turck.de
DeviceName	Gerätename des angeschlossenen Geräts	RFID-Schreib-Lese-Gerät
DeviceRevision	-	-
HardwareRevision	Hardware-Version des angeschlossenen Geräts	V1.2
Manufacturer	Hersteller des angeschlossenen Geräts	Turck
Model	Typenbezeichnung des angeschlossenen Geräts	0x018F
RevisionCounter	Firmware-Version des angeschlossenen Geräts	V1.69.82
SerialNumber	Seriennummer des angeschlossenen Geräts	197601056
SoftwareRevision	Firmware-Version des angeschlossenen Geräts	V1.69.82

Variablen – Eigenschaften

HINWEIS

Die Variablen im Ordner LastAccess (Diagnostics) werden von der Methode ScanStart und der Variable ScanActive nicht unterstützt.

Variable	Beschreibung	Ordner
DeviceStatus	Gerätestatus: Idle: Gerät ist im Leerlauf, Befehlsausführung möglich Error: Fehler Scanning: Inventory-Befehl aktiv (asynchron) Busy: Schreib- oder Lese-Vorgang aktiv (synchron)	
AntennaNames	Adresse des Schreib-Lese-Geräts	LastAccess (Diagnostics)
Client	Client, der den letzten Befehl ausgeführt hat	LastAccess (Diagnostics)
Command	zuletzt ausgeführter Befehl	LastAccess (Diagnostics)
CurrentPowerLevel	eingestellte Ausgangsleistung des UHF-Readers bei der letzten Befehlsausführung	LastAccess (Diagnostics)
Identifier	EPC des UHF-Datenträgers, der zuletzt erfasst wurde	LastAccess (Diagnostics)
PC	PC des UHF-Datenträgers, der zuletzt erfasst wurde	LastAccess (Diagnostics)
RWData	Lese- oder Schreibdaten der letzten Befehlsausführung	LastAccess (Diagnostics)
Strength	RSSI-Wert des zuletzt gelesenen Datenträgers	LastAccess (Diagnostics)

Variable	Beschreibung	Ordner
Timestamp	Zeitstempel des zuletzt gelesenen UIDs oder EPCs	LastAccess (Diagnostics)
LastLogEntry	letzter Logbucheintrag für Diagnosemeldungen	Logbook (Diagnostics)
LogColumns	Anzahl der Logbucheinträge	Logbook (Diagnostics)
Presence	Gibt an, ob vor dem angeschlossenen Schreib-Lese-Gerät ein Datenträger erkannt oder nicht erkannt wurde (true/false).	
LastScanAntenna	Adresse des Schreib-Lese-Geräts, das den zuletzt gelesenen Datenträger erfasst hat	
LastScanData	zuletzt gelesener UID oder EPC	
LastScanTimestamp	Zeitstempel des zuletzt gelesenen UIDs oder EPCs	
LastScanRSSI	RSSI-Wert des zuletzt gelesenen Datenträgers	
CodeTypes	Definiert das EPC- oder UID-Format.	RuntimeParameters
CodeTypesRWData	Definiert das Format der zu lesenden/schreibenden Daten.	RuntimeParameters
MinRSSI	Mindestwert des RSSI zur Ausführung der Aktion	RuntimeParameters
RfPower	Anpassung der Ausgangsleistung des UHF-Readers	RuntimeParameters
ScanSettings	Einstellungen zum kontinuierlichen Scannen und Lesen der UIDs oder EPCs	RuntimeParameters
Cycles	Anzahl Wiederholungen Wenn eine Gesamtlaufzeit von Cycles × Duration > 6000 ms über- schritten wird, gibt das Gerät die Fehlermeldung INVALID_CONFIGU- RATION aus.	ScanSettings (RuntimeParameters)
Duration	Zeitdauer in ms Wenn eine Gesamtlaufzeit von Cycles × Duration > 6000 ms über- schritten wird, gibt das Gerät die Fehlermeldung INVALID_CONFIGU- RATION aus.	ScanSettings (RuntimeParameters)
DataAvailable	Aktion ausführen, bis ein Datenträger im Erfassungsbereich ist	ScanSettings (RuntimeParameters)
ScanActive	Der Schreib-Lese-Kopf sucht nach Datenträgern im Erfassungsbereich und liest den UID oder EPC kontinuierlich. Die gelesenen UIDs oder EPCs werden in der Variable LastScanData und als Events bereitgestellt. Die Schreibrechte der Variable sind limitiert auf einen Client oder User. Die Variable kann nicht im Multitag-Modus genutzt werden.	

Methoden – Eigenschaften

Die Methoden enthalten zusätzlich Argumente. Über die Argumente können die Methoden konfiguriert und Status-Meldungen ausgelesen werden.

HINWEIS

Das Lesen von USER-Daten kann über die Webserver-Parameter eingestellt werden.

Methode	Argument (Typ)	Beschreibung
Scan		Das Schreib-Lese-Gerät sucht nach Datenträgern im Erfassungsbereich und liest einmalig den UID oder EPC. Wenn der Parameter Multitag aktiviert ist, werden mehrere Datenträger gelesen und ausgegeben.
	Setting (ScanSettings)	Einstellungen zum Lesen der UIDs oder EPCs
	Results (RfidScanResults)	UID oder EPC der gelesenen Datenträger
	Status (AutoldOperationStatusEnumeration)	Status des Scanvorgangs
ScanStart		Das Schreib-Lese-Gerät sucht nach Datenträgern im Erfassungsbereich und liest den UID oder EPC kontinuierlich. Zusätzlich kann über die Webserver-Parameter auch das Lesen der USER-Daten von HF-Datenträgern aktiviert werden. Die gelesenen UIDs, EPCs oder USER-Daten werden in der Variable LastScanData und als Events bereitgestellt. Die Methode kann nicht im Multitag-Modus genutzt werden.
	Setting (ScanSettings)	Einstellungen zum kontinuierlichen Lesen der UIDs oder EPCs
	Status (AutoldOperationStatusEnumeration)	Status des kontinuierlichen Scan-Vorgangs
ScanStop		Beendet das durch ScanStart gestartete kontinuierliche Lesen von Daten.
KillTag		Der Speicher eines UHF-Datenträgers wird unbenutzbar gemacht. Nach einem KillTag-Befehl kann der Daten- träger weder gelesen noch beschrieben werden. Ein Kill- Tag-Befehl kann nicht rückgängig gemacht werden.
	AutoID-Identifier (ScanData)	EPC des Datenträgers, für den der Kill-Befehl ausgeführt werden soll
	KillPassword (ByteString)	Kill-Passwort des Datenträgers, für den der Kill-Befehl ausgeführt werden soll
	CodeType (String)	Definiert das EPC- oder UID-Format.
	Status (AutoIdOperationStatusEnumeration)	Status der Befehlsausführung

Methode LockTag	Argument (Typ)	Aktiviert oder deaktiviert den Passwortschutz für einen Datenträger oder schützt den ausgewählten Speicherbereich des Datenträgers permanent und unwiderruflich.
	AutoID-Identifier (ScanData)	EPC des Datenträgers, der gesperrt werden soll
	CodeType (String)	Definiert das EPC- oder UID-Format.
	Password (ByteString)	Access-Passwort des Datenträgers (falls erforderlich)
	Region (RfidLockRegionEnumeration)	Nur in UHF-Anwendungen: Definiert den Speicherbereich des UHF-Datenträgers, der gesperrt werden soll. Die folgenden Speicherbereiche können gesperrt werden: 0: reserviert (Kill- und Access-Passwort) 1: EPC 3: USER
	Lock (RfidLockOperationEnumeration)	 Legt die Art der Sperre fest: 0: Lock (Der gesamte ausgewählte Speicherbereich wird mit einem Passwort schreibgeschützt.) 1: Unlock (nicht unterstützt) 2: Permanent Lock (Der gesamte ausgewählte Speicherbereich wird unwiderruflich gegen Schreibzugriff gesperrt. Kill-Passwort und Access-Passwort sind zusätzlich unwiderruflich gegen Lesezugriff gesperrt.) 3: Permanent Unlock (nicht unterstützt)
		Speicherbereiche Lock: EPC und PC, USER Speicherbereiche Permanent Lock: EPC und PC, USER, Access-Passwort, Kill-Passwort
_	Status (AutoldOperationStatusEnumeration)	Status der Befehlsausführung
SetTagPassword		Setzt ein Passwort in den UHF-Datenträger. Die Methode ist nur für UHF-Anwendungen verfügbar.
	AutoID-Identifier (ScanData)	EPC des UHF-Datenträgers, der geschützt werden soll
	Password Type (Rfid Password Type Enumeration)	Passwort-Art (z. B. Access-Passwort)
	AccessPassword (ByteString)	Access-Passwort des Datenträgers (falls erforderlich)
	NewPassword (ByteString)	neues Passwort, das auf den Datenträger geschrieben werden soll
	CodeType (String)	Definiert das EPC- oder UID-Format.
	Status (AutoldOperationStatusEnumeration)	Status der Befehlsausführung

Methode	Argument (Typ)	Beschreibung
ReadTag		Das Schreib-Lese-Gerät liest Daten der Datenträger im Erfassungsbereich.
	AutoID-Identifier (ScanData)	UID oder EPC des Datenträgers, der gelesen werden soll
	Offset (UInt32)	Startadresse des zu lesenden Speicherbereichs auf dem Datenträger
	Length (UInt32)	Anzahl der zu lesenden Bytes
	Password (ByteString)	Access-Passwort des Datenträgers (falls erforderlich)
	Region (RfidLockRegionEnumeration)	Nur in UHF-Anwendungen: Definiert den Speicherbereich des UHF-Datenträgers, der gelesen werden soll. Die folgenden Speicherbereiche können gelesen werden: 0: reserviert 1: EPC 2: TID 3: User
	CodeType (String)	Definiert das EPC- oder UID-Format.
	Status (AutoldOperationStatusEnumeration)	Status der Befehlsausführung
	ResultData (ByteString)	Lesedaten
WriteTag		Das Schreib-Lese-Gerät schreibt Daten auf Datenträger im Erfassungsbereich.
	AutoID-Identifier (ScanData)	UID oder EPC des Datenträgers, der beschrieben werden soll
	Offset (UInt32)	Startadresse des Speicherbereichs auf dem Datenträger
	Password (ByteString)	Access-Passwort des Datenträgers (falls erforderlich)
	Region (RfidLockRegionEnumeration)	Nur in UHF-Anwendungen: Definiert den Speicherbereich des UHF-Datenträgers, der geschrieben werden soll. Die folgenden Speicherbereiche können geschrieben werden: 0: reserviert 1: EPC 3: User
	CodeType (String)	Definiert das EPC- oder UID-Format.
	Status (AutoldOperationStatusEnumeration)	Status der Befehlsausführung
	Data (ByteString)	Schreibdaten

Methode	Argument (Typ)	Beschreibung
WriteTagID		Schreiben eines neuen UIDs oder EPCs (nur für UHF-Anwendungen)
	AutoID-Identifier (ScanData)	UID oder EPC des Datenträgers, der beschrieben werden soll
	CodeType (String)	Definiert das EPC- oder UID-Format.
	NewUid (ByteString)	UID oder EPC, der auf den Datenträger geschrieben werden soll
	AFI (Byte)	(nicht unterstützt)
	Toggle (Boolean)	(nicht unterstützt)
	Password (ByteString)	Access-Passwort des Datenträgers (falls erforderlich)
	Status (AutoldOperationStatusEnumeration)	Status der Befehlsausführung

8.1.2 Digitale Kanäle (DXP) – Mapping im Informationsmodell

Jedem angeschlossenen digitalen Sensor oder Aktuator ist ein DXP-Kanal zugeordnet.

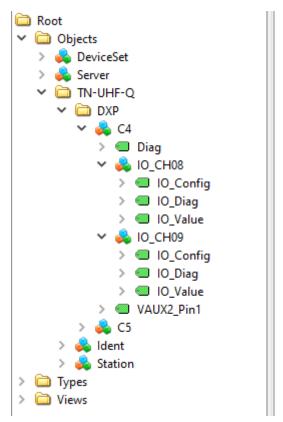


Abb. 47: Informationsmodell der DXP-Kanäle 8 und 9 – Beispiel: UAExpert

Variablen – Eigenschaften

Name	Beschreibung
IO_Config	0: Kanal als digitalen Eingang konfigurieren 1: Kanal als digitalen Ausgang konfigurieren
IO_Diag	0: kein Fehler vorhanden 1: Fehler vorhanden
IO_Value	0: kein Signal vorhanden 1: Signal vorhanden

8.2 RFID-Interfaces über den Webserver parametrieren

Über den integrierten Webserver können neben der OPC-UA-spezifischen Konfiguration auch die Parameter für die RFID-Kanäle und die digitalen Kanäle eingestellt werden. Zusätzlich lässt sich im Webserver die zuschaltbare Versorgungsspannung VAUX einstellen.

Zur Bearbeitung von Einstellungen über den Webserver ist ein Login erforderlich. Im Auslieferungszustand lautet das Passwort "password".

HINWEIS

Turck empfiehlt, das Passwort aus Sicherheitsgründen nach dem ersten Login zu ändern.

- Webserver des Geräts öffnen.
- Username und Password eingeben.
- ► **Login** klicken.

8.2.1 Digitale Kanäle (DXP) über den Webserver parametrieren

- ▶ Webserver öffnen.
- In der Navigationsleiste am linken Bildrand Local I/O → Parameter klicken.
- ▶ DXP-Kanal wählen (hier: Digital In/Out 8).
- ▶ Gewünschte Parameter über das jeweilige Drop-down-Menü setzen.

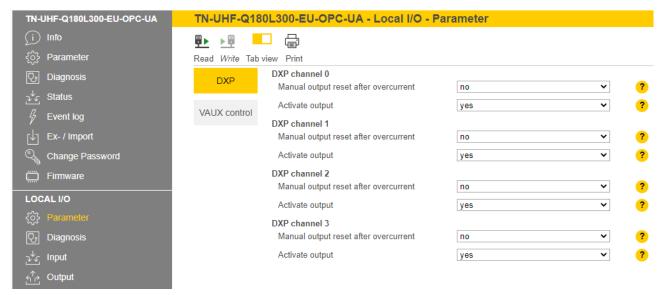


Abb. 48: Webserver - Parameter DXP-Kanäle

DXP-Kanäle – Bedeutung der Parameter

Default-Werte sind fett dargestellt.

Bezeichnung	Bedeutung
Activate output (Ausgang aktivieren)	Yes: Ausgang aktiviert. No: Ausgang deaktiviert.
Manual output reset after overcurrent (Manueller Reset des Aus- gangs nach Überstrom)	Yes: Der Ausgang schaltet sich nach Überstrom erst nach Zurück- nehmen und erneutem Setzen des Schaltsignals wieder ein No: Der Ausgang schaltet sich nach Überstrom automatisch wieder ein.

- 8.2.2 Digitale Kanäle Zuschaltbare Versorgungsspannung VAUX parametrieren
 - ▶ Webserver öffnen.
 - ▶ In der Navigationsleiste am linken Bildrand Local I/O → Parameter klicken.
 - Zuschaltbare Versorgungsspannung VAUX control wählen.
 - ▶ Gewünschte Parameter über das jeweilige Drop-down-Menü setzen.

Abb. 49: Webserver - Parameter VAUX control

Zuschaltbare Versorgungsspannung – Bedeutung der Parameter

Bezeichnung	Bedeutung
VAUX2 Pin1 C4 (Ch0/1)	Aktiviert oder deaktiviert die 24-VDC-Versorgung VAUX2 an Pin 1 von Kanal 0 und Kanal 1. Default-Einstellung: ein
VAUX2 Pin1 C5 (Ch2/3)	Aktiviert oder deaktiviert die 24-VDC-Versorgung VAUX2 an Pin 1 von Kanal 2 und Kanal 3. Default-Einstellung: ein

8.3 Gerät mit Demo-Programmen testen

Zu Testzwecken stehen unter www.turck.com zwei Demo-Programme kostenfrei zum Download zur Verfügung:

Programm	Beschreibung
OPC UA Client Demo V1.2.0 - Complete RFID functionality	RFID-Methoden testen
OPC UA Client Demo V1.2.0 - Notifications about scan events	Lesen von UID oder EPC testen

HINWEIS

Die Demo-Programme können ab dem Zeitpunkt der Verbindung eine Stunde genutzt werden.

Der Quellcode der Demo-Programme ist kostenfrei zum Download verfügbar. Die Demo-Programme wurden mit der folgenden Software erstellt:

- Visual Studio IDE V 17
- Unified Automation .NET-SDK V 2.5.8.410

8.3.1 RFID-Methoden testen

Das Programm enthält die folgenden Methoden und Funktionen:

- Scan
- ScanStart
- ScanStop
- ReadTag
- WriteTag
- Info (Eigenschaften des angeschlossenen Schreib-Lese-Geräts)

HINWEIS

Bei UHF wid automatisch der User-Bereich gelesen oder beschrieben.

Eine Beschreibung der Methoden entnehmen Sie dem Kapitel "RFID-Kanäle – Mapping im Informationsmodell"

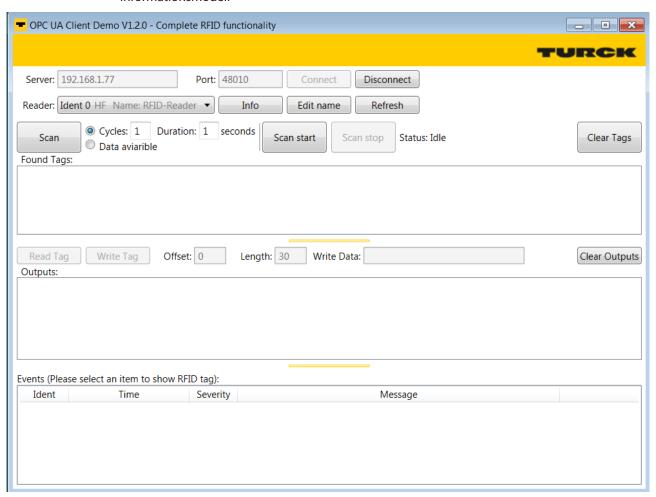


Abb. 50: OPC UA Client Demo V1.2.0 - Complete RFID functionality

Beispiel: Scan-Methode ausführen

- ✓ Das Gerät ist mit einem PC verbunden.
- ▶ IP-Adresse des Servers und Port angeben.
- ▶ Verbindung zum OPC-UA-Server über **Connect** aufbauen.
- Schreib-Lese-Gerät auswählen. Über **Info** können die Eigenschaften des angeschlossenen Schreib-Lese-Geräts angezeigt werden. Über **Edit** lässt sich der Name des ausgewählten Schreib-Lese-Geräts ändern.
- Anzahl der Zyklen und Dauer der Befehlsausführung in Sekunden angeben oder Data available anwählen. Bei Data available wird der Befehl ausgeführt, bis ein Datenträger gefunden wird.
- ▶ Datenträger über **Scan** suchen.
- ⇒ Die gefundenen Datenträger werden im Bereich Result angezeigt.
- Datenträger zur weiteren Bearbeitung auswählen.
- Bei Bedarf Offset und Länge anpassen.
- ▶ Daten vom Datenträger lesen: **Read Tag** klicken.
- ▶ Daten auf den Datenträger schreiben: Gewünschte Daten eintragen und Write Tag klicken.

8.3.2 Lesen von EPC testen

Das Programm enthält die folgenden Methoden und Funktionen:

- ScanStart
- ScanStop

Eine Beschreibung der Methoden entnehmen Sie dem Kapitel "RFID-Kanäle – Mapping im Informationsmodell"

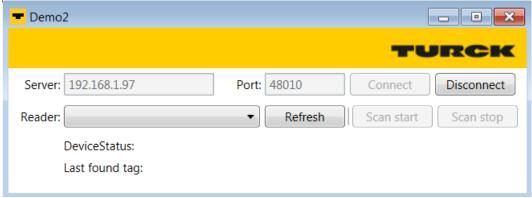


Abb. 51: OPC UA Client Demo V1.2.0 - Notifications about read events

Beispiel: ScanStart-Methode ausführen

- ✓ Das Gerät ist mit einem PC verbunden.
- ▶ IP-Adresse des Servers und Port angeben.
- ▶ Verbindung zum OPC-UA-Server über **Connect** aufbauen.
- Reader auswählen. Über **Info** können die Eigenschaften des angeschlossenen Readers angezeigt werden. Über **Edit** lässt sich der Name des ausgewählten Readers ändern.
- ► ScanStart klicken.
- ⇒ Der jeweils letzte gefundene Datenträger und der Gerätestatus des Interface werden angezeigt.

9 Betreiben

HINWEIS

Nach einem Spannungsreset werden die im Gerät gespeicherten Lese- und Schreibdaten zurückgesetzt.

9.1 Methode ausführen und Daten abrufen

Die Daten können entweder vom OPC-UA-Client abgerufen oder durch den OPC-UA-Server als Event-Benachrichtigungen an das übergeordnete System weitergegeben werden.

- ► Methode **Scan** ausführen.
- ⇒ Die Daten werden als Ergebnis zurückgegeben und können vom Client abgefragt werden.
- ⇒ Der zuletzt gelesene Datenträger kann in der Variable LastScanData ausgelesen werden.
- Die Variable **Status** zeigt an, ob die Methode aktiv ist und ob der Reader betriebsbereit ist.
- ▶ Einen Befehl über die Methode ScanStart ausführen.
- ⇒ Die Reader werden in den Report-Mode versetzt. Die Lesedaten werden über Event-Benachrichtigungen allen Clients zur Verfügung gestellt, die diesen Service abonniert haben. Eine gesonderte Abfrage durch den OPC-UA-Client ist nicht erforderlich.
- ⇒ Der zuletzt gelesene Datenträger kann in der Variable LastScanData ausgelesen werden.
- ⇒ Die Variable **Status** zeigt an, ob die Methode aktiv ist und ob das Schreib-Lese-Gerät betriebsbereit ist.

- 9.1.1 Beispiel: Datenträger mit spezifischem UID lesen oder schreiben
 - ▶ Die Methode **Scan** im OPC-UA-Client (hier: UAExpert) aufrufen.
 - ▶ Unter Input Arguments → Setting den [...]-Button klicken.
 - ⇒ Das Fenster **Edit Value** öffnet sich.
 - ▶ Den Wert in der Zeile **DataAvailable** von **false** auf **true** ändern (doppelt klicken, Kästchen anhaken).
 - ▶ Vorgang mit Write bestätigen und den Datenträger mit Klick auf Call lesen.

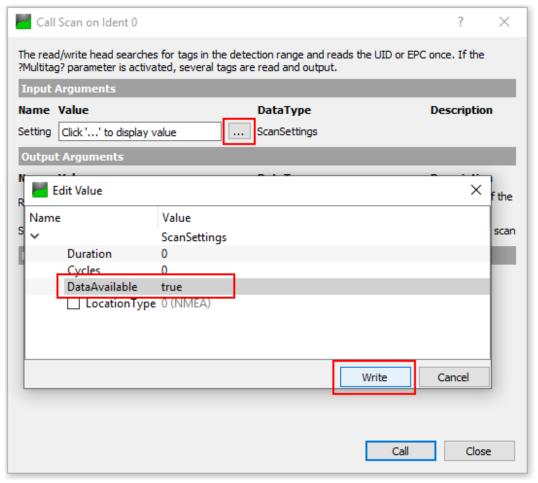


Abb. 52: Methode Scan – Settings (Beispiel: UAExpert)

- ▶ Unter **Output Arguments** → **Results** den [...]-Button klicken.
- ► Im Fenster Value in der Zeile ByteString den gelesenen UID mit Rechtsklick kopieren (hier: E0040150588039B1).

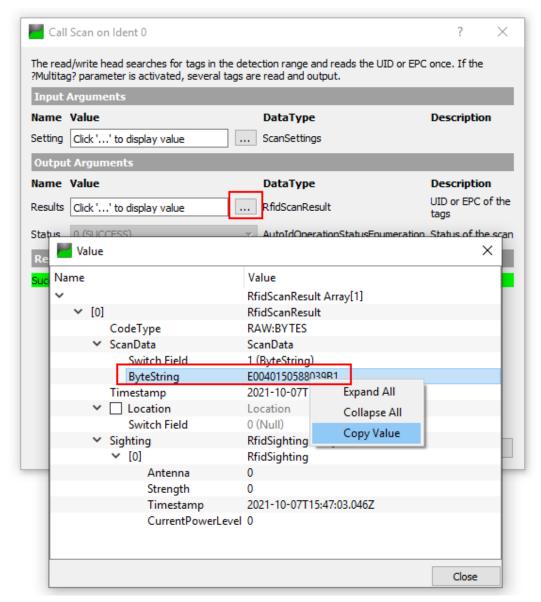


Abb. 53: Gelesenen UID kopieren

- ► Methode **ReadTag** aufrufen.
- ▶ Unter Input Arguments → Identifier den [...]-Button klicken.
- Im Fenster **Edit Value** in der Zeile **Switch Field** im Drop-down-Menü **1 (ByteString)** auswählen.

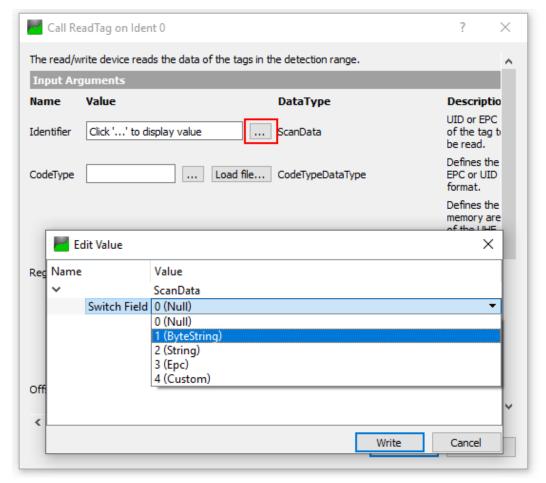


Abb. 54: Methode ReadTag – ByteString auswählen

- ▶ Den kopierten UID in der Zeile **ByteString** einfügen.
- Vorgang mit Write bestätigen.

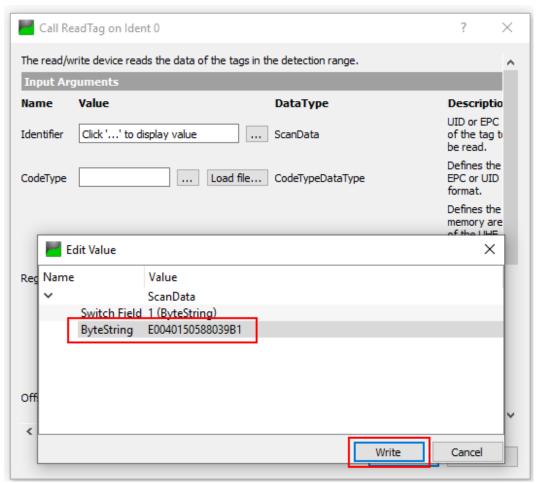


Abb. 55: Identifier – kopierten UID eingeben

- ► Unter Input Arguments → Offset die Startadresse des zu lesenden Speicherbereichs eingeben (hier: 0).
- ▶ Unter **Length** die Anzahl der zu lesenden Bytes eingeben (hier: **30**).
- ► Unter **CodeType** den [...]-Button klicken.
- ▶ Im Fenster **Edit Value** den Begriff **UID** eingeben.
- ▶ Vorgang mit Write bestätigen und Call klicken.
- ⇒ Der Datenträger wird gelesen.

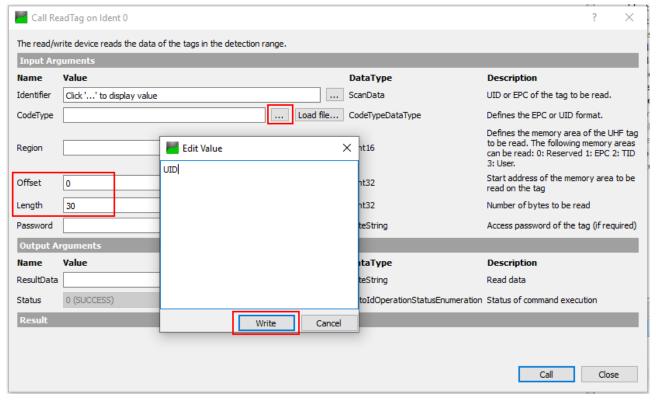


Abb. 56: Einstellungen Methode ReadTag

- ▶ Unter **Output Arguments** → **ResultData** den [...]-Button klicken.
- ⇒ Im Fenster **Value** werden die auf dem Datenträger gespeicherten Informationen angezeigt.

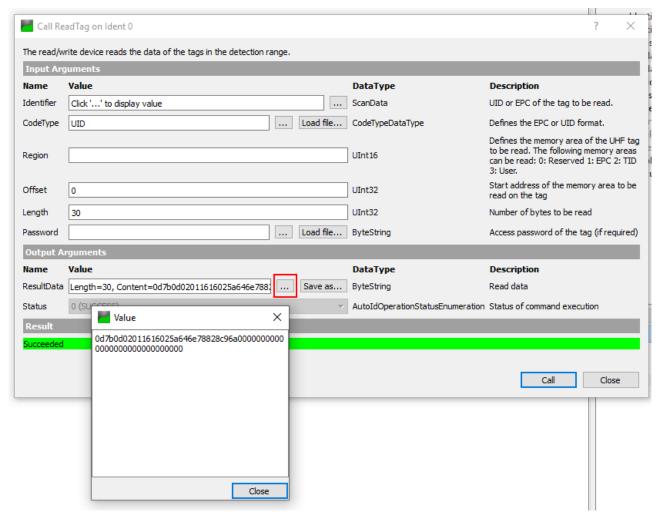


Abb. 57: Auf dem Datenträger gespeicherte Informationen

9.2 Sensor-Signale und RFID-Methoden verknüpfen

Sensor-Signale können durch Programmierung in der Client-Applikation mit der Ausführung einer RFID-Methode verknüpft werden. Alternativ kann der Report-Mode des Schreib-Lese-Kopfs genutzt werden (siehe Methode ScanStart). Im Report-Mode wird der Schreib-Lese-Kopf automatisch getriggert, sobald sich ein Datenträger im Erfassungsbereich befindet.

9.3 LED-Anzeigen

Das Gerät verfügt über folgende LED-Anzeigen:

- Versorgungsspannung
- Sammel- und Busfehler
- Status
- Diagnose

LED PWR	Bedeutung
aus	keine Spannung oder Unterspannung an V1
grün	Spannung an V1 ok
rot	keine Spannung oder Unterspannung an V2
LED ERR	Bedeutung
aus	keine Spannung vorhanden
aus grün	keine Spannung vorhanden keine Diagnose

LED RUN	Bedeutung
aus	OPC-UA-Server nicht aktiv
grün	OPC-UA-Server aktiv
blinkt rot (doppelt, 1 Hz)	F_Reset aktiv

LEDs ETH1 und ETH2	Bedeutung
aus	keine Ethernet-Verbindung
grün	Ethernet-Verbindung hergestellt, 100 Mbit/s
blinkt grün	Datentransfer, 100 Mbit/s
gelb	Ethernet-Verbindung hergestellt, 10 Mbit/s
blinkt gelb	Datentransfer, 10 Mbit/s

9.4 Status- und Diagnosemeldungen auslesen

9.4.1 OPC-UA-spezifische Diagnosemeldungen auslesen

Die OPC-UA-spezifischen Diagnosemeldungen werden beim Ausführen von Methoden über das Argument "Status" ausgegeben.

HINWEIS

Weitere spezifische Fehlermeldungen der Reader werden im Webserver ausgegeben.

Meldung	Beschreibung	Mögliche Ursachen
SUCCESS	kein Fehler, Befehl erfolgreich ausgeführt	-
MISC_ERROR_TOTAL	Befehl nicht vollständig ausgeführt	unbekannter Fehler
PERMISSON_ERROR	Passwort erforderlich	Ein gültiges Passwort wird erwartet, bevor der Befehl akzeptiert wird.
PASSWORD_ERROR	Passwort falsch	
REGION_NOT_FOUND_ERROR	Speicherbereich für aktuellen Datenträger nicht verfügbar	Speicherbereich des Datenträgers außerhalb des erlaubten Bereichs
OUT_OF_RANGE_ERROR	angegebener Speicherbereich für den aktuellen Datenträger nicht verfügbar	
NO_IDENTIFIER	Befehl nicht vollständig ausgeführt – kein Datenträger im Erfassungsbereich	 kein Datenträger gefunden Time-out Luftschnittstellen-Fehler: Time-out Luftschnittstellen-Fehler: UHF-Datenträger außerhalb des Erfassungsbereichs, bevor alle Befehle ausgeführt werden konnten UHF-Reader: kein Datenträger im Feld Luftschnittstellen-Fehler: Datenträger hat nicht den erwarteten UID
MULTIPLE_IDENTIFIERS	Mehrere Datenträger wurden ausgewählt, Befehl nur für einen Datenträger nutzbar.	
READ_ERROR	Datenträger konnte nicht gelesen werden.	 Fehler beim Lesen von einem Datenträger Lesevorgang nicht möglich (z. B. ungültiger Datenträger) Fehler des UHF-Readers bei der Ausführung eines Inventory-Befehls
WRITE_ERROR	Datenträger konnte nicht beschrieben werden.	 Schreibvorgang nicht möglich (z. B. Datenträger ausschließlich lesbar) Fehler beim Schreiben auf einen Datenträger

Meldung	Beschreibung	Mögliche Ursachen
-	Befehl oder Parameter werden vom Gerät nicht unterstützt.	-
NOT_SUPPORTED_BY_TAG	Befehl oder Parameter werden vom Datenträger nicht unter- stützt.	 Passwort-Funktion vom Datenträger nicht unterstützt Befehl für Multitag-Anwendung mit automatischer Datenträger-Erkennung nicht unterstützt Befehl für Multitag-Anwendung nicht unterstützt
DEVICE_NOT_READY	Gerät nicht betriebsbereit	■ UHF-Reader verstimmt
INVALID_CONFIGURATION	Gerätekonfiguration ungültig	 Parameter undefiniert Parameter Überbrückungszeit außerhalb des erlaubten Bereichs Wert für Time-out außerhalb des erlaubten Bereichs Fehler bei der Parametrierung des UHF-Readers
RF_COMMUNICATION_ERROR	Fehler bei der Kommunikation zwischen Schreib-Lese-Gerät und Datenträger	 Luftschnittstellen-Fehler Luftschnittstellen-Fehler: CRC-Fehler Luftschnittstellen-Fehler: Time-out Luftschnittstellen-Fehler: UHF-Datenträger-Fehler
DEVICE_FAULT	Hardwarefehler im ange- schlossenen Gerät	■ UHF-Reader nicht verbunden

9.4.2 Kanal- und Modul-Diagnosemeldungen im Webserver aufrufen

Diagnosemeldungen – Modulstatus

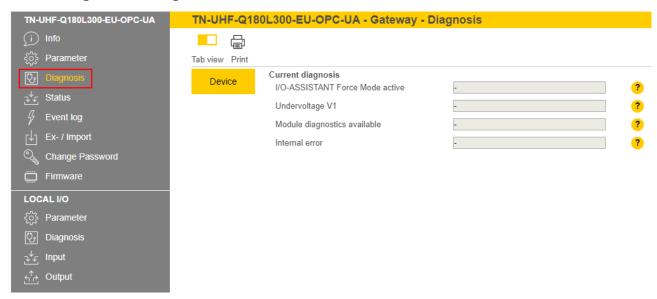


Abb. 58: Webserver - Diagnose Modulstatus

Statusmeldung	Beschreibung
I/O-ASSISTANT Force Mode active	DTM im Force-Mode aktiv
Undervoltage V1	Unterspannung V1
Module diagnostics available	Moduldiagnose liegt an
Internal error	Interner Fehler

Diagnosemeldungen – RFID-Kanäle

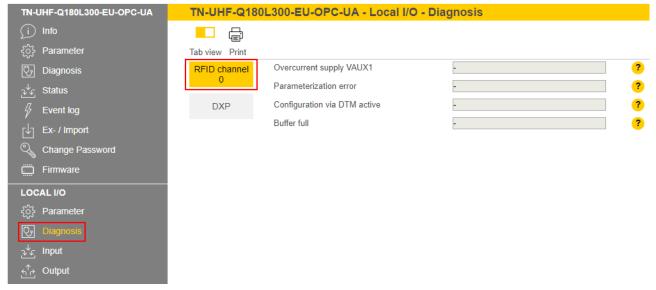


Abb. 59: Webserver - Diagnosen RFID-Kanäle

Diagnose	Beschreibung
Overcurrent supply VAUX1	Überstrom VAUX 1
Parameterization error	Parametrierungsfehler
Configuration via DTM active	Konfiguration über DTM aktiv
Buffer full	Puffer voll

Diagnosemeldungen – DXP-Kanäle

Abb. 60: Webserver - Diagnosen DXP-Kanäle

Diagnose	Beschreibung
Overcurrent output	Überstrom am Ausgang

9.5 Gerät zurücksetzen (Reset)

HINWEIS

Das Gerät lässt sich auf zwei Arten zurücksetzen.

Reset ohne Zurücksetzen des OPC-UA-Servers

- ✓ Keine Vorbereitungen erforderlich.
- ► Reset direkt über TAS oder Webserver durchführen.

Gerät per Power-Reset neu starten inklusive Zurücksetzen des OPS-UA-Servers

- ► Gerät per Power-Reset neu starten.
 - ⇒ So ist sichergestellt, dass der Anwender physischen Zugang zum Gerät hat.
- Innerhalb von 60 Sekunden Reset über TAS oder Webserver durchführen.

10 Störungen beseitigen

Wenn das Gerät nicht wie erwartet funktioniert, gehen Sie wie folgt vor:

- ▶ Umgebungsstörungen ausschließen.
- ► Anschlüsse des Geräts auf Fehler untersuchen.
- ► Gerät auf Parametrierfehler überprüfen.

Wenn die Fehlfunktion weiterhin besteht, liegt eine Gerätestörung vor. In diesem Fall nehmen Sie das Gerät außer Betrieb und ersetzen Sie es durch ein neues Gerät des gleichen Typs.

10.1 Fehler beheben

Fehler werden durch eine rot leuchtende LED ERR am Gerät angezeigt.

Fehlermeldungen im Webserver aufrufen und beseitigen

HINWEIS

Wenn der Fehler nach dem Zurücksetzen des Geräts weiterhin besteht, wenden Sie sich an Turck.

- In den Webserver einloggen (siehe Seite Einstellungen im Webserver bearbeiten).
- In der Navigationsleiste am linken Bildrand **Diagnostics** anklicken.
- ⇒ Die Fehlermeldungen werden im Gerätestatus angezeigt.

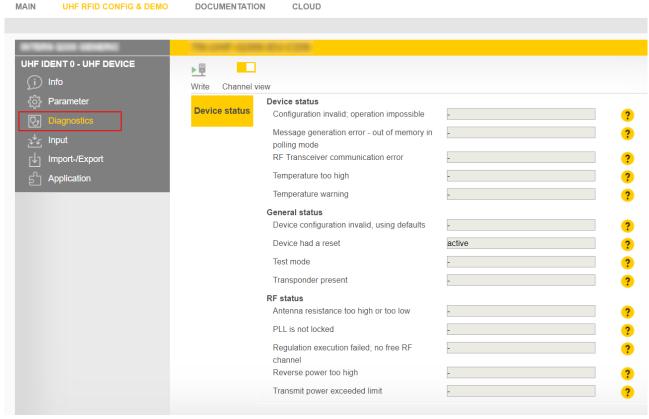


Abb. 61: Webserver - Diagnose

Fehlermeldungen beseitigen:

- ▶ In der Navigationsleiste am linken Bildrand Local I/O → Output anklicken.
- ► RFID control/status ch0 anwählen.
- ► Reset-Befehl über das Drop-down-Menü Command code wählen: 0x8000 Reset
- ⇒ Das Gerät wird zurückgesetzt.

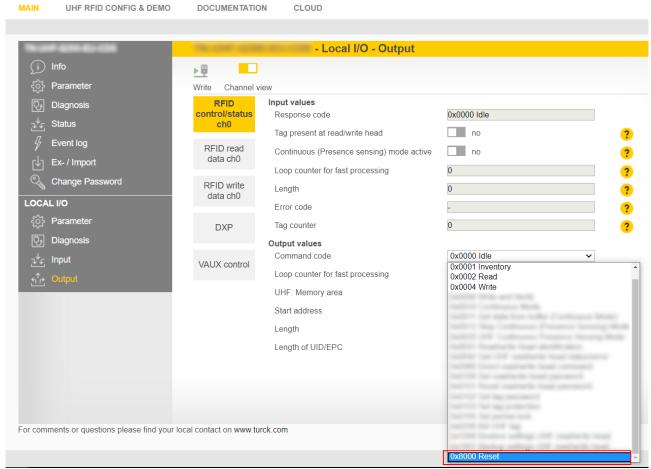


Abb. 62: Webserver – Gerät zurücksetzen

11 Instand halten

11.1 Firmware-Update über TAS ausführen

ACHTUNG

Unterbrechung der Spannungsversorgung und Ethernet-Verbindung während des Firmware-Updates

Geräteschäden durch fehlerhaftes Firmware-Update

- ► Spannungsversorgung des Geräts während des Firmware-Updates nicht unterbrechen.
- ▶ Während des Firmware-Updates keinen Spannungsreset durchführen.
- ► Ethernet-Verbindung des Geräts während des Firmware-Updates nicht unterbrechen.

HINWEIS

Die Firmware-Update-Funktion in TAS ist bei aktiver Steuerungsverbindung gesperrt. Das Gerät muss vor der Durchführung des Updates zuerst von der Steuerung getrennt werden.

Firmware-Update für ein Gerät starten

- ► TAS öffnen.
- Netzwerk-Ansicht öffnen und Netzwerk scannen.
- Gerät auswählen.
- ► Firmware-Update anklicken.
- Im nachfolgenden Fenster: **Datei auswählen** anklicken und Verzeichnis der Firmware-Datei öffnen.
- ▶ Neue Firmware-Datei auswählen und über Öffnen laden.
- ▶ Start klicken, um das Firmware-Update zu starten.
- ► Gerätepasswort eingeben und Anmelden anklicken.

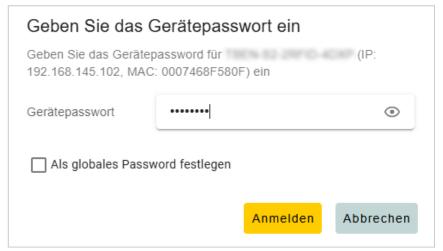


Abb. 63: Gerätepasswort eingeben

⇒ Der Fortschritt des Firmware-Updates wird angezeigt.

HINWEIS

TAS ermöglicht, das Setzen eines globalen Passworts, mit dem alle Geräte entsperrt werden können. Voraussetzung hierfür ist, dass alle ausgewählten Geräte dasselbe Gerätepasswort besitzen und sich im selben TCP-Netzwerk befinden.

Alternativ zur Auswahl eines einzelnen Geräts kann auch eine Mehrfachauswahl für Geräte getroffen werden. Alle zu aktualisierenden Geräte müssen hierfür dem gleichen Gerätetyp entsprechen und sich im selben TCP-Netzwerk befinden.

So kann ein Firmware-Update für mehrere Geräte auf einmal durchgeführt werden.

Firmware-Update für mehrere Geräte starten

- ▶ Alle gewünschten Geräte in der Netzwerk-Ansicht über die Check-Box auswählen.
- ► **FW-Update** in der Kopfzeile anklicken.

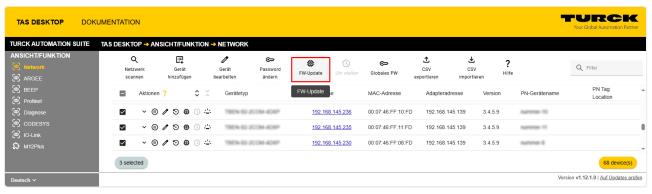


Abb. 64: Firmware-Update Netzwerkansicht Mehrfachauswahl

- Im nachfolgenden Fenster: Datei auswählen anklicken und Verzeichnis der Firmware-Datei öffnen.
- Neue Firmware-Datei auswählen und über Öffnen laden.
- **Start** klicken um das Firmware-Update zu starten.
- Falls noch kein globales Passwort definiert wurde: Passwort eingeben und die Option Als globales Passwort festlegen aktivieren.

 Hinweis: Wenn noch kein globales Passwort definiert wurde und die Option Als globales Passwort festlegen nicht aktiviert ist, wird das Passwort für jedes Gerät individuell abgefragt.
- ► Anmelden anklicken.

Abb. 65: Gerätepasswort eingeben und als globales Passwort setzen

⇒ Der Fortschritt des Firmware-Updates wird angezeigt.

Abb. 66: Firmware-Update, Fortschritt

11.2 Firmware-Update über den Webserver durchführen

ACHTUNG

Unterbrechung der Spannungsversorgung und Ethernet-Verbindung während des Firmware-Updates

Geräteschäden durch fehlerhaftes Firmware-Update

- ► Spannungsversorgung des Geräts während des Firmware-Updates nicht unterbrechen.
- ▶ Während des Firmware-Updates keinen Spannungsreset durchführen.
- ► Ethernet-Verbindung des Geräts während des Firmware-Updates nicht unterbrechen.
- Webserver öffnen.
- Als Administrator auf dem Gerät einloggen. Das Default-Passwort für den Webserver ist "password".
- ► Firmware → SELECT FIRMWARE FILE anklicken.
- Neue Firmware-Datei auswählen und über Öffnen laden.

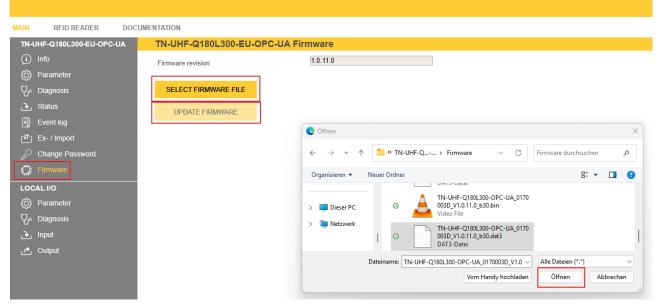


Abb. 67: Webserver – Firmware-Update

- ▶ UPDATE FIRMWARE anklicken und Firmware-Update starten.
- ► Gerät nach dem Beenden des Update-Vorgangs durch Klicken auf **Ok** neu starten.

12 Reparieren

Das Gerät ist nicht zur Reparatur durch den Benutzer vorgesehen. Sollte das Gerät defekt sein, nehmen Sie es außer Betrieb. Bei Rücksendung an Turck beachten Sie unsere Rücknahmebedingungen.

12.1 Geräte zurücksenden

Rücksendungen an Turck können nur entgegengenommen werden, wenn dem Gerät eine Dekontaminationserklärung beiliegt. Die Erklärung steht unter http://www.turck.de/de/produkt-retoure-6079.php

zur Verfügung und muss vollständig ausgefüllt, wetter- und transportsicher an der Außenseite der Verpackung angebracht sein.

13 Entsorgen

Die Geräte müssen fachgerecht entsorgt werden und gehören nicht in den normalen Hausmüll.

14 Technische Daten

Technische Daten	
Elektrische Daten	
Betriebsspannung	1830 VDC
DC Bemessungsbetriebsstrom	≤ 3500 mA
Datenübertragung	elektromagnetisches Wechselfeld
Technologie	UHF RFID
Funk- und Protokollstandards	ISO 18000-63 EPCglobal Gen 2
Antennenpolarisation	zirkular/linear, einstellbar
Antennenhalbwertsbreite	65°
Ausgangsfunktion	lesen/schreiben
Mechanische Daten	
Einbaubedingung	nicht bündig
Umgebungstemperatur	-20+50 °C
Bauform	Quader
Abmessungen	300 x 300 x 61,7 mm
Gehäusewerkstoff	Aluminium, AL, silber
Material aktive Fläche	Glasfaser verstärktes Polyamid, PA6-GF30, schwarz
Vibrationsfestigkeit	55 Hz (1 mm)
Schockfestigkeit	30 g (11 ms)
Schutzart	IP67
Elektrischer Anschluss	RP-TNC
Eingangsimpedanz	50 Ohm
MTTF	49 Jahre nach SN 29500 (Ed. 99) 20 °C
Systembeschreibung	
Prozessor	ARM Cortex A8, 32 Bit, 800 MHz
Speicher	MB Flash
RAM Speicher	512 MB DDR3
Systemdaten	
Übertragungsrate Ethernet	10/100 Mbit/s
Anschlusstechnik Ethernet	1 × M12, 4-polig, D-codiert
Webserver	Default: 192.168.1.100

Technische Daten		
Digitale Eingänge		
Kanalanzahl	4	
Anschlusstechnik	M12, 5-polig	
Eingangstyp	PNP	
Schaltschwelle	EN 61131-2 Typ 3, PNP	
Signalspannung Low-Pegel	< 5 V	
Signalspannung High-Pegel	> 11 V	
Signalstrom Low-Pegel	< 1,5 mA	
Signalstrom High-Pegel	> 2 mA	
Art der Eingangsdiagnose	Kanaldiagnose	
Digitale Ausgänge		
Kanalanzahl	4	
Anschlusstechnik	M12, 5-polig	
Ausgangstyp	PNP	
Art der Ausgangsdiagnose	Kanaldiagnose	

15 Turck-Niederlassungen – Kontaktdaten

Deutschland Hans Turck GmbH & Co. KG

Witzlebenstraße 7, 45472 Mülheim an der Ruhr

www.turck.de

Australien Turck Australia Pty Ltd

Building 4, 19-25 Duerdin Street, Notting Hill, 3168 Victoria

www.turck.com.au

Belgien Turck Multiprox N. V.

Lion d'Orweg 12, B-9300 Aalst

www.multiprox.be

Brasilien Turck do Brasil Automação Ltda.

Rua Anjo Custódio Nr. 42, Jardim Anália Franco, CEP 03358-040 São Paulo

www.turck.com.br

China Turck (Tianjin) Sensor Co. Ltd.

18,4th Xinghuazhi Road, Xiqing Economic Development Area, 300381

Tianjin

www.turck.com.cn

Frankreich TURCK BANNER S.A.S.

11 rue de Courtalin Bat C, Magny Le Hongre, F-77703 MARNE LA VALLEE

Cedex 4

www.turckbanner.fr

Großbritannien TURCK BANNER LIMITED

Blenheim House, Hurricane Way, GB-SS11 8YT Wickford, Essex

www.turckbanner.co.uk

Indien TURCK India Automation Pvt. Ltd.

401-403 Aurum Avenue, Survey. No 109 /4, Near Cummins Complex,

Baner-Balewadi Link Rd., 411045 Pune - Maharashtra

www.turck.co.in

Italien TURCK BANNER S.R.L.

Via San Domenico 5, IT-20008 Bareggio (MI)

www.turckbanner.it

Japan TURCK Japan Corporation

ISM Akihabara 1F, 1-24-2, Taito, Taito-ku, 110-0016 Tokyo

www.turck.jp

Kanada Turck Canada Inc.

140 Duffield Drive, CDN-Markham, Ontario L6G 1B5

www.turck.ca

Korea Turck Korea Co, Ltd.

A605, 43, Iljik-ro, Gwangmyeong-si

14353 Gyeonggi-do www.turck.kr

Malaysia Turck Banner Malaysia Sdn Bhd

Unit A-23A-08, Tower A, Pinnacle Petaling Jaya, Jalan Utara C,

46200 Petaling Jaya Selangor www.turckbanner.my

Mexiko Turck Comercial, S. de RL de CV

Blvd. Campestre No. 100, Parque Industrial SERVER, C.P. 25350 Arteaga,

Coahuila

www.turck.com.mx

Niederlande Turck B. V.

Ruiterlaan 7, NL-8019 BN Zwolle

www.turck.nl

Österreich Turck GmbH

Graumanngasse 7/A5-1, A-1150 Wien

www.turck.at

Polen TURCK sp.z.o.o.

Wrocławska 115, PL-45-836 Opole

www.turck.pl

Rumänien Turck Automation Romania SRL

Str. Siriului nr. 6-8, Sector 1, RO-014354 Bucuresti

www.turck.ro

Schweden Turck AB

Fabriksstråket 9, 433 76 Jonsered

www.turck.se

Singapur TURCK BANNER Singapore Pte. Ltd.

25 International Business Park, #04-75/77 (West Wing) German Centre,

609916 Singapore www.turckbanner.sg

Südafrika Turck Banner (Pty) Ltd

Boeing Road East, Bedfordview, ZA-2007 Johannesburg

www.turckbanner.co.za

Tschechien TURCK s.r.o.

Na Brne 2065, CZ-500 06 Hradec Králové

www.turck.cz

Türkei Turck Otomasyon Ticaret Limited Sirketi

Inönü mah. Kayisdagi c., Yesil Konak Evleri No: 178, A Blok D:4,

34755 Kadiköy/ Istanbul www.turck.com.tr

Ungarn TURCK Hungary kft.

Árpád fejedelem útja 26-28., Óbuda Gate, 2. em., H-1023 Budapest

www.turck.hu

USA Turck Inc.

3000 Campus Drive, USA-MN 55441 Minneapolis

www.turck.us

Over 30 subsidiaries and 60 representations worldwide!

www.turck.com