

Industrielle Automation

ANWENDER-HANDBUCH

FGENBLOCKMODULE
MIT
MULTI-PROTOKOLLFUNKTIONALITÄT

Alle Marken- und Produktnamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Titelhalter.
Ausgabe 10/2013
© Hans Turck GmbH, Mülheim an der Ruhr
Alle Rechte, auch die der Übersetzung, vorbehalten. Kein Teil dieses Handbuches darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Zustimmung der Firma Hans Turck GmbH & Co. KG, Mülheim an der Ruhr reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.
Änderungen vorbehalten.

i

Inhaltsverzeichnis

1	Zu diesem Handbuch	
1.1	Dokumentationskonzept	1-2
1.2	Erklärungen zu den verwendeten Symbolen	1-3
1.3	Allgemeine Hinweise	1-4
1.3.1	Bestimmungsgemäßer Gebrauch	1-4
1.3.2	Hinweise zur Projektierung/Installation des Produktes	
1.4	Änderungsindex	1-5
2	Multiprotokoll-Funktionalität	
2.1	Allgemeines	2-2
2.1.1	Protokollabhängige Funktionen	
3	FGEN – allgemeine technische Eigenschaften	
3.1	Allgemeines	3.2
3.2	Allgemeine Informationen zu FGEN	
3.3	Allgemeine Technische Daten	
3.3.1	Technische Daten	
3.3.2	Maßzeichnung	
3.3.3	LED-Anzeigen	
3.4	Anschlussmöglichkeiten	3-7
3.4.1	Ethernet	3-7
3.4.2	Betriebs-/Lastspannung	3-7
3.4.3	Ein- und Ausgänge	3-8
3.5	Adressierung	
3.5.1	Default-Einstellung des Gerätes	
3.5.2	Rücksetzen der IP-Adresse, Schalterstellung "000"	
3.5.3	Adressierung der Station über den Rotary-Modus	
3.5.4	Adressierung über den Modus BootP	
3.5.5	Adversion up a über den Modus DHCP	
3.5.6 3.5.7	Adressierung über den Modus PGMAdressierung über Modus PGM-DHCP	
3.5.8	F Reset (Rücksetzen auf Werkseinstellung)	
3.5.0 3.5.9	Adressierung über I/O-ASSISTANT 3 (FDT/DTM)	
3.5.10	Adressierung über Webserver	
3.6	SET-Taster	3-17
3.7	Gerätekonfigurations dateien	3-17
3.8	Webserver - Remote Zugriff/Konfiguration	3-18
3.8.1	IP-Adresse	
3.8.2	Zugriffsrechte	3-19
3.8.3	Login/Passwort	
3.8.4	Network Configuration	
3.8.5	Station Configuration	
3.8.6	Station Diagnostics	3-21

3.8.7	Ethernet Statistics	3-21
3.8.8	Links	
3.8.9	Change Admin Password	
3.8.10	Parameters	3-23
3.9	Status- und Control-Wort der FGEN-Stationen	3-24
3.9.1	Status-Wort	3-24
3.9.2	Control-Wort	3-24
4	Digitale Eingänge FGEN-IM16-x001	
4.1	FGEN-IM16-x001	4-2
4.1.1	Technische Daten	4-2
4.1.2	Anschlussbilder	
4.1.3	Parameter	4-3
4.1.4	Diagnosemeldungen	4-3
5	Digitale Ausgänge FGEN-OM16-x001	
5.1	FGEN-OM16-x001	5-2
5.1.1	Technische Daten	5-2
5.1.2	Anschlussbilder	
5.1.3	Parameter	
5.1.4	Diagnosemeldungen	5-3
6	Digitale Ein-/Ausgänge FGEN-IOM88-x001, FGEN-XSG16-x00	01
6.1	FGEN-IOM88-x001	6-2
6.1.1	Technische Daten	6-2
6.1.2	Anschlussbilder	6-3
6.1.3	Parameter	6-3
6.1.4	Diagnosemeldungen	6-4
6.2	FGEN-XSG16-000x	6-5
6.2.1	Technische Daten	6-5
6.2.2	Anschlussbilder	6-6
6.2.3	Parameter	6-7
6.2.4	Diagnosemeldungen	6-7
7	Implementierung von EtherNet/IP™	
7.1	EtherNet/IP Kommunikations-Profil	7-2
7.1.1	I/O Messages	7-2
7.1.2	Explicit Messages	
7.1.3	Kommunikations-Profil für FGEN	
7.2	QC - QuickConnect	7-4
7.2.1	Allgemeines	7-4
7.2.2	QuickConnect in FGEN	
7.3	Klassen und Instanzen der EtherNet/IP™-Stationen	7-6
7.3.1	EtherNet/IP™ Standardklassen	
7.3.2	Identity Objekt (0×01)	
7.3.3	Assembly Object (0×04)	
7.3.4	Connection Manager Object (0×06)	
7.3.5	TCP/IP Interface Object (0×F5)	7-22

7.3.6	Ethernet Link Object (0×F6)	7-26
7.4	VSC-Vendor Specific Classes	7-28
7.4.1	Class Instance der VSCs	
7.4.2	Gateway Class (VSC 100)	
7.4.3 7.4.4	Process Data Class (VSC102) Digital Versatile Module Class (VSC117)	
7.4.4 7.4.5	Miscellaneous Parameters Class (VSC 126)	
7.5	Diagnosemeldungen über die Prozessdaten	
7.5.1	Sammeldiagnose (Summarized Diagnostics)	
7.5.2	Herstellerspezifische Diagnose (Scheduled Diagnostics)	
8	Applikationsbeispiel: FGEN für EtherNet/IP™ mit Allen Bradley PLC und RS L	ogix 5000
8.1	Allgemeine Hinweise	8-2
8.1.1	Verwendete Hard-/Software	8-2
8.2	Netzwerkkonfiguration	8-3
8.2.1	Konfiguration des Netzwerkes in "RS Logix 5000"	
8.2.2	Download der I/O-Konfiguration	8-9
8.3	I/O-Daten-Mapping	8-11
8.4	Prozessdatenzugriff	8-12
8.4.1	Setzen von Ausgängen	
8.4.2	Beispiel-Programm	
8.5	Aktivieren von QuickConnect	8-14
9	Implementierung von Modbus TCP	
9.1	Allgemeine Modbus-Beschreibung	
9.1.1	Protokoll-Beschreibung	
9.1.2	Datenmodell	
9.2	Implementierte Modbus-Funktionen	9-6
9.3	Modbus Register	9-7
9.3.1	Datenbreiten der IO-Stationen im Modbus-Registerbereich	
9.3.2	Registermapping der FGEN-Stationen	
9.3.3 9.3.4	Register 100Ch: "Stations-Status" Register 1130h: "Modbus-Connection-Mode"	
9.3.5	Register 1131h: "Modbus-Connection-Timeout"	
9.3.6	Register 0×113C und 0×113D: "Restore Modbus-Verbindungs-Parameter"	
9.3.7	Register 0×113E und 0×113F: "Save Modbus-Verbindungs-Parameter"	
9.4	Bit-Bereiche: Mapping der Input-Discrete- und Coil-Bereiche	9-19
9.5	Verhalten der Ausgänge im Fehlerfall (Watchdog)	9-20
9.6	Parameter und Diagnosemeldungen der I/O-Kanäle	9-21
10	Anwendungsbeispiel: FGEN für Modbus TCP mit CoDeSys Win V3	
10.1	Verwendete Hard-/Software	10-2
10.1.1	Hardware	
	Software	

10.2	Netzwerkkonfiguration	10-3
10.3	Programmierung mit CoDeSys	10-4
10.3.1	Vordefinierte Feature Sets	
10.3.2	Erstellen eines neuen Projektes	
10.3.3	Definieren der Kommunikationseinstellungen	
10.3.4	Hinzufügen des Ethernet-Adapters	
10.3.5	Hinzufügen des Modbus Masters	
10.3.6	Anhängen eines Modbus TCP-Slaves	
10.3.7	Programmierung (Beispielprogramm)	
10.3.8	CoDeSys: Globale Variablen	
10.3.9	Modbus-Kanäle	
	Übersetzen, Einlogen und Start	
	Auslesen der Prozessdaten	
11	Implementierung von PROFINET	
11.1	FSU - Fast Start-Up (priorisierter Hochlauf)	11-2
11.1.1	Allgemeines	11-2
11.1.2	FSU in FGEN	11-2
11.2	GSDML-Datei	11-3
11.3	PROFINET-Error Codes	11-4
11.4	Parameter	11-5
11.4.1	Allgemeine Modulparameter - Parameter für die Station (turck-fgen)	11-5
11.4.2	Parameter für I/O-Kanäle	11-6
11.5	Beschreibung der Nutzdaten für azyklische Dienste	11-7
11.5.1	Beschreibung der azyklischen Stations-Nutzdaten	11-7
11.5.2	Beschreibung der azyklischen I/O-Kanal-Nutzdaten	
12	Anwendungsbeispiel: FGEN für PROFINET mit einer Siemens S7	
12.1	Anwendungsbeispiel	12-2
12.1.1	Allgemeines	12-2
12.1.2	Beispielnetzwerk	12-2
	Neues Projekt im Simatic Manager	
	Einstellen der PG/PC-Schnittstelle	
	Einlesen der GSDML-Dateien	
	Hinzufügen von PROFINET-Netzwerkteilnehmern	
	Scannen des Netzwerkes nach PROFINET-Teilnehmern	
	Namenszuweisung FGEN-Stationen	
	PROFINET-Nachbarschaftserkennung (LLDP)	
	Online Topologieerkennung	
	Fast Start-Up - Konfiguration der Feldbusknoten	
12.1.12	Diagnose mit Step 7	12-18
13	Richtlinien für die elektrische Installation	
13.1	Allgemeine Hinweise	
	Übergreifendes	
	Leitungsführung	
1313	Rlitzschutz	13-3

16	Index	
15	Glossar	
14.2.1	Adressierung über DHCP	14-7
14.2	Deaktivieren/ anpassen der Firewall bei Windows	
14.1.1 14.1.2	Änderung der IP-Adresse bei Windows Änderung der IP-Adresse über PACTware™ (I/O-ASSISTANT V3)	
14.1	Änderung der IP-Adresse eines PCs/einer Netzwerkkarte	
14	Anhang	
13.5.2	Schutz gegen elektrostatische Entladung	13-7
13.5.1	Beschaltung von Induktivitäten	
13.5	Potenzialausgleich	
13.4	Schirmung von Leitungen	13-6
13.3.2	PE-Anschluss	
13.3.1 13.3.2	Sicherstellung der EMV	13-5
13.3	Elektromagnetische Verträglichkeit (EMV)	13-5
13.2	Potenzial verhältnisse	13-4
13.1.4	Ubertragungsmedien	13-3

1 Zu diesem Handbuch

1.1	Dokumentationskonzept	. 1-2
1.2	Erklärungen zu den verwendeten Symbolen	. 1-3
1.3	Allgemeine Hinweise	. 1-4
1.3.1	Bestimmungsgemäßer Gebrauch	1-4
1.3.2	Hinweise zur Projektierung/Installation des Produktes	1-4
1.4	Änderungsindex	. 1-5

1.1 Dokumentationskonzept

Dieses Handbuch beinhaltet alle Informationen über die TURCK FGEN-Produktreihe mit Multiprotokoll-Funktion in Schutzart IP67.

Die nachfolgenden Kapitel beinhalten:

- die allgemeinen technischen Daten und Eigenschaften der Stationen,
- eine Beschreibung der Funktion und Beschaffenheit der einzelnen Geräte der Baureihe,
- eine Beschreibung der Abbildung der Stationen in den verschiedenen Ethernet-Protokollen
- eine Beschreibung der Handhabung der Geräte in den verschiedenen Steuerungsumgebungen.

1.2 Erklärungen zu den verwendeten Symbolen

Gefahi

Dieses Zeichen steht neben Warnhinweisen, die auf eine Gefahrenquelle hindeuten. Dieses kann sich auf Personenschäden und auf Beschädigungen der Systeme (Hard- und Software) beziehen.

Für den Anwender bedeutet dieses Zeichen: Gehen Sie mit ganz besonderer Vorsicht zu Werke.

Achtung

Dieses Zeichen steht neben Warnhinweisen, die auf eine potenzielle Gefahrenquelle hindeuten.

Dies kann sich auf mögliche Personenschäden und auf Beschädigungen der Systeme (Hardund Software) und Anlagen beziehen.

Hinweis

Dieses Zeichen steht neben allgemeinen Hinweisen, die auf wichtige Informationen zum Vorgehen hinsichtlich eines oder mehrerer Arbeitsschritte deuten.

Die betreffenden Hinweise können die Arbeit erleichtern und zum Beispiel helfen, Mehrarbeit durch falsches Vorgehen zu vermeiden.

1.3 Allgemeine Hinweise

Achtung

Diesen Abschnitt sollten Sie auf jeden Fall lesen, da die Sicherheit im Umgang mit elektrischen Geräten nicht dem Zufall überlassen werden darf.

Dieses Handbuch enthält die erforderlichen Informationen für den bestimmungsgemäßen Gebrauch der FGEN-Stationen. Es wurde speziell für qualifiziertes Personal mit dem nötigen Fachwissen konzipiert.

1.3.1 Bestimmungsgemäßer Gebrauch

Gefahr

Die in diesem Handbuch beschriebenen Geräte dürfen nur für die in diesem Handbuch und in der jeweiligen technischen Beschreibung vorgesehenen Einsatzfälle und nur in Verbindung mit zertifizierten Fremdgeräten und -komponenten verwendet werden.

Der einwandfreie und sichere Betrieb der Geräte setzt sachgemäßen Transport, sachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Wartung voraus.

1.3.2 Hinweise zur Projektierung/Installation des Produktes

Gefahr

Die für den jeweiligen Einsatzfall geltenden Sicherheits- und Unfallverhütungsvorschriften sind unbedingt zu beachten.

1.4 Änderungsindex

Die folgenden Änderungen/ Ergänzungen wurden im Vergleich zur Vorgängerversion dieses Handbuchs vorgenommen.

Tabelle 1-1:	Kapitel	Thema	neu	Änderung
Änderungsindex	3	Webserver - Remote Zugriff/Konfiguration (Seite 3-18)		Х
	5	Anpassung der technischen Daten der Module, Seite 5-2		Х
	6	Anpassung der technischen Daten der Module, Seite 6-2 und Seite 6-5		х
	7	EtherNet/IP Kommunikations-Profil (Seite 7-2)	х	

Hinweis

Mit Erscheinen dieses Handbuchs verlieren alle vorherigen Ausgaben ihre Gültigkeit.

Zu diesem Handbuch

2 Multiprotokoll-Funktionalität

2.1	Allgemeines	2-2
2.1.1	Protokollabhängige Funktionen	2-2
	- PROFINET	
	– EtherNet/IP™	2-2

2.1 Allgemeines

Die kompakten I/O-Stationen der Produktreihe FGEN vereinen die drei Ethernet Protokolle EtherNet/IP™, Modbus TCP und PROFINET in einem Gerät.

Ein Multiprotokoll-Gerät kann ohne Eingriff des Anwenders (d. h. ohne Umprogrammierung) an allen drei genannten Ethernet-Systemen betrieben werden.

Nach Aufschalten der Spannung wird in der der Hochlaufphase ("Snooping") des Systems durch Mithören des Datenverkehrs ermittelt, welches Ethernet Protokoll einen Verbindungsaufbau anfordert.

Wird ein Protokoll erkannt, wechselt das Gerät automatisch zu diesem und ignoriert die Telegramme der anderen zwei Protokoll.

2.1.1 Protokollabhängige Funktionen

PROFINET

- Fast Start-UP (FSU)
- Topologieerkennung
- Adresszuweisung mittels LLDP

EtherNet/IP™

- QuickConnect (QC), siehe Aktivieren von QuickConnect (Seite 8-14)
- DLR (Device Level Ring)

3 FGEN – allgemeine technische Eigenschaften

3.1	Allgemeines	3-2
3.2	Allgemeine Informationen zu FGEN	3-3
3.3	Allgemeine Technische Daten	3-4
3.3.1	Technische Daten	3-4
3.3.2	Maßzeichnung	
3.3.3	LED-Anzeigen	
3.4	Anschlussmöglichkeiten	3-7
3.4.1	Ethernet	3-7
	- Ethernet-Anschluss bei QC-/FSU-Applikationen	
3.4.2	Betriebs-/Lastspannung	3-7
	– Spannungsversorgung über 7/8", 5-polig (FGEN-xxxxx-5001)	
	- Spannungsversorgung über 7/8", 4-polig (FGEN-xxxxx-4001)	
3.4.3	Ein- und Ausgänge	
3.5	Adressierung	3-9
3.5.1	Default-Einstellung des Gerätes	3-9
3.5.2	Rücksetzen der IP-Adresse, Schalterstellung "000"	
3.5.3	Adressierung der Station über den Rotary-Modus	
3.5.4	Adressierung über den Modus BootP	
3.5.5	Adressierung über den Modus DHCP	
3.5.6	Adressierung über den Modus PGM	
3.5.7	Adressierung über Modus PGM-DHCP	
	- PROFINET	
3.5.8	F_Reset (Rücksetzen auf Werkseinstellung)	
3.5.9	Adressierung über I/O-ASSISTANT 3 (FDT/DTM)	
3.5.10	Adressierung über Webserver	
3.6	SET-Taster	3-17
3.7	Gerätekonfigurationsdateien	3-17
3.8	Webserver - Remote Zugriff/Konfiguration	3-18
3.8.1	IP-Adresse	3-18
3.8.2	Zugriffsrechte	
3.8.3	Login/Passwort	
3.8.4	Network Configuration	
3.8.5	Station Configuration	
3.8.6	Station Diagnostics	
3.8.7	Ethernet Statistics	
3.8.8	Links	
3.8.9	Change Admin Password	
3.8.10	Parameters	
3.9	Status- und Control-Wort der FGEN-Stationen	3-24
3.9.1	Status-Wort	3-7/
٥. ٦ . ١	- Bedeutung der Status-Bits	
3.9.2	Control-Wort	

3.1 Allgemeines

Dieses Kapitel enthält alle Informationen zum Aufbau, zu den allgemeinen technischen Daten der Stationen der Baureihe FGEN sowie zu Anschlussmöglichkeiten, Adressierung etc.

Hinweis

Stationsspezifische Informationen entnehmen Sie bitte den einzelnen Stationsbeschreibungen in den jeweiligen Kapiteln dieses Handbuches.

3.2 Allgemeine Informationen zu FGEN

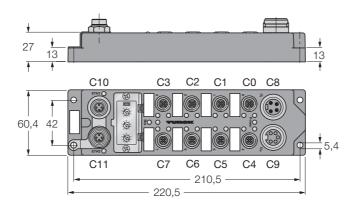
Die FGEN-Produktfamilie weist folgende bewährte Eigenschaften auf:

- direkte Anbindung von bis zu 16 digitalen Ein-/Ausgängen an ein Ethernet-Netzwerk.
- Protokolle: EtherNet/IP™, Modbus TCP and PROFINET RT in einem einzigen Gerät
- kanalbezogene Kurzschlussdiagnose der Ausgänge und steckplatzbezogene Kurzschlussdiagnose der Eingänge.
- Ethernet-Anschluss über zwei 4-polige, D-kodierte M12 x 1 Rundsteckverbinder
- integrierter Ethernet Switch zum Aufbau einer Linientopologie

3.3 Allgemeine Technische Daten

3.3.1 Technische Daten

Tabelle 3-1: Technische Daten der FGEN-Stationen Energieversorgung


Betriebsspannung U _B (VI)	18 bis 30 V DC
Lastspannung U _L (VO)	18 bis 30 V DC
Interner Stromverbrauch (aus U _B)	< 200 mA
Anschlüsse	
Ethernet	2 x M12-Buchse (OUT), 4-polig, D-kodiert
Energieversorgung	
FGEN-xxxx- 5 001	7/8" Steckverbinder, 5-polig
FGEN-xxxx- 4 001	7/8" Steckverbinder, 4-polig
Ein-/ Ausgänge	M12-Buchsen, 5-polig
Trennspannungen	
U _{BL} (U _B zu U _L)	keine
U _{ETH} (Versorgungsspannung zu Ethernet)	500 V AC
U _{ETHETH} (ETH1 zu ETH 2)	500 V AC
Gehäuse	glasfaserverstärktes Polyamid (PA6-GF30)
Abmessungen	$60.4 \times 220.5 \times 27 \text{ mm } (B \times L \times H)$
Montage	über 4 Befestigungslöcher, Ø 4,4 mm
Montageabstand Station zu Station	≥ 50 mm Gültig bei Betrieb in u.g. Umgebungstemperaturen bei ausreichender Belüftung, sowie Maximalbela- stung. (waagerechte Nennlage). Ggf. sind bei geringen Gleichzeitigkeitsfaktoren und niedrigen Umgebungstemperaturen auch Montage- abstände von < 50 mm realisierbar
Schutzart	IP67
Schwingungsprüfung	gemäß EN 60068-2-6, IEC 68-2-47
Schockprüfung	gemäß EN 60068-2-27
EMV	gemäß EN 61131-2

Temperaturbereich		
– Betrieb	0 °C bis + 55 °C (+ 32 °F bis + 131 °F)	
– Lagerung/Transport	- 25 °C bis + 70 °C (- 13 °F bis + 158 °F)	

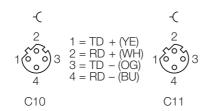
3.3.2 Maßzeichnung

Abbildung 3-1: Abmessungen der FGEN-Stationen

3.3.3 LED-Anzeigen

Tabelle 3-2: LED-Anzeigen der FGEN-Stati- onen	LED	Anzeige	Bedeutung	Abhilfe
	ETHx	grün	Link hergestellt, 100 MBit/s	
		grün, blinkend	Ethernet Traffic 100 MBit/s	
		gelb	Link hergestellt, 10 MBit/s	
		gelb, blinkend	Ethernet Traffic 10 MBit/s	
		aus	Kein Ethernet Link	Überprüfen Sie die Ethernet- Verbindung.
	Power	aus	U _B < 18 V DC	Überprüfen Sie die ange- legte Betriebsspannung.
		grün	U _B und U _L im Arbeitsbereich	
		rot	U _L < 18 V DC	Überprüfen Sie die Lastspan- nung.
	lx/Ox	grün	24 V am Eingang/ Ausgang	
		rot	Überstrom am Ausgang oder an der Sensorversorgung	
	BUS	grün	Aktive Verbindung zu einem Master	-
		grün, blinkend	Gerät ist betriebsbereit	-
		rot	IP-Adressen-Konflikt oder Res- tore Mode	Checken Sie die IP-Adressen im Netzwerk oder warten Sie bis das Gerät wieder be- triebsbereit ist.
		rot, blinkend	Blink-/Wink-Kommando aktiv	-
		rot/grün	Autonegotiation und/oder Warten auf DHCP-/BootP-Adres- sierung	

3.4 Anschlussmöglichkeiten


3.4.1 Ethernet

Der Anschluss an Ethernet erfolgt über den integrierten Autocrossing-Switch der Station mit Hilfe zweier 4-polig, D-kodierten M12 x 1-Ethernet-Kupplungen.

Abbildung 3-2: Pinbelegung der M12 x 1-Kupplungen, 4-polig

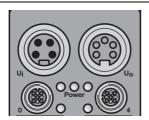
Kupplungen Ethernet M12 x 1

ETH1 ETH2

Ethernet-Anschluss bei QC-/FSU-Applikationen

Hinweis

Für QuickConnect (QC)- und Fast Start-Up (FSU)-Applikationen mit FGEN gilt Folgendes:


- kein Crossover-Kabel verwenden
- ETH1 = Buchse für **ankommende** Ethernet-Leitung
- ETH2 = Buchse für **abgehende** Ethernet-Leitung

3.4.2 Betriebs-/Lastspannung

Die Versorgung wird über 7/8"- Steckverbinder realisiert.

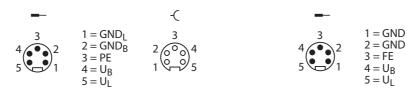
Diese sind abhängig vom Stationstyp 4- oder 5-polig ausgelegt.

Abbildung 3-3: Spannungsversorgung

U_I = Einspeisen der Spannung

 U_O = Weiterführen der Spannung zum nächsten Teilnehmer

Hinweis


Die Versorgungs (U_B)- und Lastspannung (U_L) werden separat eingespeist und überwacht. Bei Unterschreitung der zulässigen Spannung werden die Ausgänge abgeschaltet.

 $\rm U_L$ kann abgeschaltet werden. Ist dies der Fall, läuft das Gerät weiter und die Eingänge werden eingelesen.

Bei einer Unterschreitung von U_L wechselt die LED "POWER" von Grün auf Rot. Bei einer Unterschreitung von U_B erlischt die LED "POWER".

Spannungsversorgung über 7/8", 5-polig (FGEN-xxxxx-5001)

Abbildung 3-4: 7/8"-Stecker und -Buchse, 5-polig

U₁ und U_B galvanisch getrennt.

Keine galvanische Trennung von U_L und U_B beim FGEN-XSG16-5001!

-(

Spannungsversorgung über 7/8", 4-polig (FGEN-xxxxx-4001)

Abbildung 3-5: 7/8"-Stecker und -Buchse, 4-polig

U_L und U_B galvanisch getrennt.

Keine galvanische Trennung von U_L und U_B beim FGEN-XSG16-4001!

3.4.3 Ein- und Ausgänge

Die Anschlussebene für Sensoren und Aktoren ist durchgängig mit 5-poligen M12-Metall-Steckverbindern ausgestattet.

Hinweis

Bitte entnehmen Sie die Pinbelegung den Anschlussbildern in den stationsspezifischen Kapiteln dieses Handbuches.

3.5 Adressierung

Die Einstellung der Modi erfolgt über die 3 Drehkodierschalter am Gerät.

Abbildung 3-6: Dezimale Drehkodierschalter für die Adressierung

000: 192.168.1.254 1 - 254: static rotary 300: BootP 400: DHCP 500: PGM 600: PGM-DHCP 900: F_Reset

Achtung

Nach der Adressierung muss die Schutzabdeckung über den Schaltern wieder fest verschraubt werden.

Achten Sie darauf, dass die Dichtung der Schutzabdeckung nicht beschädigt oder verrutscht ist.

Die Schutzart IP67 kann nur bei korrekt geschlossener Abdeckung gewährleistet werden.

Hinweis

Beim Wechsel des Adressier-Modus ist generell ein Neutstart des Gerätes durchzuführen.

3.5.1 Default-Einstellung des Gerätes

Die Stationen haben folgende Default-Einstellungen:

IP-Adresse 192.168.1.254 Subnetz-Maske 255.255.255.0 Default-Gateway 192.168.1.1

Hinweis

Die Stationen können jederzeit vom Anwender auf diese Default-Einstellungen zurückgesetzt werden.

Dazu müssen die 3 Drehkodierschalter am Gerät auf "000" gestellt und anschließend ein Spannungs-Reset durchgeführt werden.

3.5.2 Rücksetzen der IP-Adresse, Schalterstellung "000"

Mit der Einstellung des Drehkodierschalters auf "000" und einem nachfolgenden Spannungsreset wird die Station für IP-basierte Dienste auf die Adresse 192.168.1.254 gesetzt (siehe Default-Einstellung des Gerätes (Seite 3-9)).

In dieser Schalterstellung kann z. B. der I/O-ASSISTANT mit der Station kommunizieren.

Hinweis

Schalterstellung "000" ist kein Betriebsmodus. Nach dem Rücksetzen der IP-Adresse auf die Default-Werte ist das Einstellen eines anderen Modus notwendig.

3.5.3 Adressierung der Station über den Rotary-Modus

Schalterstellung: 001 - 254

Bei der Adressierung über den Rotary-Modus wird das letzte Byte der IP-Adresse der Station an den dezimalen Drehkodierschaltern eingestellt.

Einstellbar sind Adressen von 0-255, wobei 1 in den meisten Fällen als Adresse für das Default-Gateway reserviert ist und 0 und 255 für Broadcast-Meldungen im Subnetz verwendet wird.

Hinweis

Wir empfehlen daher die Einstellung der Adressen im Bereich 2-254.

3.5.4 Adressierung über den Modus BootP

Schalterstellung: 300

Die Adressierung erfolgt hierbei bei der Inbetriebnahme des Gerätes über einen BootP-Server im Netzwerk.

Hinweis

Die vom BootP-Server zugewiesene Subnetmaske und Default-Stations-Adresse werden nichtflüchtig im EEPROM des Gerätes gespeichert.

Im Falle eines Umschaltens in den Rotary- oder den PGM-Modus, werden die hier vorgenommenen Einstellungen (IP-Adresse, Subnetz-Maske) aus dem EEPROM der Station übernommen.

PROFINET

Achten Sie bitte bei PROFINET-Anwendungen darauf, dass die über den BootP-Server vergebene Adresse mit der Adresse, die im Konfigurationstool vergebenen wird, übereinstimmt.

3.5.5 Adressierung über den Modus DHCP

Schalterstellung: 400

Die Adressierung erfolgt hierbei bei der Inbetriebnahme des Gerätes über einen DHCP-Server im Netzwerk.

Hinweis

Die vom DHCP-Server zugewiesene Subnetmaske und Default-Stations-Adresse werden nichtflüchtig im EEPROM des Gerätes gespeichert.

Im Falle eines Umschaltens in den Rotary- oder den PGM-Modus, werden die hier vorgenommenen Einstellungen (IP-Adresse, Subnetz-Maske) aus dem EEPROM der Station übernommen.

DHCP unterstützt 3 Arten der IP-Adresszuweisung:

- Bei der "automatischen Adressvergabe", vergibt der DHCP-Server eine permanente IP-Adresse an den Client.
- Bei der "dynamischen Adressvergabe", ist die vom Server vergebene Adresse immer nur für einen bestimmten Zeitraum reserviert. Nach Ablauf dieser Zeit, oder wenn ein Client die Adresse innerhalb dieses Zeitraums von sich aus explizit "freigibt", wird sie neu vergeben.
- Bei der "manuellen Adressvergabe", erfolgt die Zuweisung durch den Netzwerk-Administrator. DHCP wird in diesem Fall nur noch zur Übermittlung der zugewiesenen Adresse an den Client genutzt.

PROFINET

Achten Sie bitte bei PROFINET-Anwendungen darauf, dass die über den DHCP-Server vergebene Adresse mit der Adresse, die im Konfigurationstool vergebenen wird, übereinstimmt.

3.5.6 Adressierung über den Modus PGM

Schalterstellung: 500

Der PGM-Modus ermöglicht den Zugriff des I/O-ASSISTANTs auf die Netzwerk-Einstellungen des Gerätes.

Hinweis

Im PGM-Modus werden alle Netzwerk-Einstellungen (IP-Adresse, Subnetz-Maske etc.) in den internen EEPROM der Station übernommen und nichtflüchtig gespeichert.

3.5.7 Adressierung über Modus PGM-DHCP

Schalterstellung: 600

Das Gerät sendet DHCP-Requests, bis ihm eine IP-Adresse zugewiesen wird (DHCP-Server, PROFINET-Controller).

Die zugewiesene Adresse wird im Gerät gespeichert und der DHCP-Client wird deaktiviert.

Auch nach einem Neustart des Gerätes werden keine weiteren DHCP-Requests mehr vom Gerät gesendet.

PROFINET

Dieser Modus ermöglicht den PROFINET-konformen Betrieb des Gerätes.

Hinweis

Wird im Netzwerk ein DHCP-Server verwendet, kann es bei der Zuweisung der IP-Adresse zu Problemen kommen.

In diesem Fall versuchen sowohl der DHCP-Server als auch der PROFINET-Controller (über DCP) eine IP-Adressen-Zuweisung.

3.5.8 F_Reset (Rücksetzen auf Werkseinstellung)

Schalterstellung: 900

Die Einstellung 900 setzt alle Einstellungen des Gerätes auf die Default-Werte zurück und löscht alle Daten im internen Flash des Gerätes.

Hinweis

Schalterstellung 900 ist kein Betriebsmodus! Nach dem Rücksetzen des Gerätes auf die Default-Werte ist das Einstellen eines anderen Modus notwendig.

3.5.9 Adressierung über I/O-ASSISTANT 3 (FDT/DTM)

Die Software I/O-ASSISTANT ermöglicht den direkten Zugriff auf das Ethernet-Netzwerk über das Ethernet-Kabel.

Sowohl die IP-Adresse als auch die Subnetzmaske der Ethernet-Station können bei einer Verbindung des Gerätes über Ethernet applikationsabhängig über die Funktion "Busadressen-Management" der Schnittstelle BL Service Ethernet (TCP/IP) im I/O-ASSISTANT geändert werden.

Abbildung 3-7: BL Service Ethernet

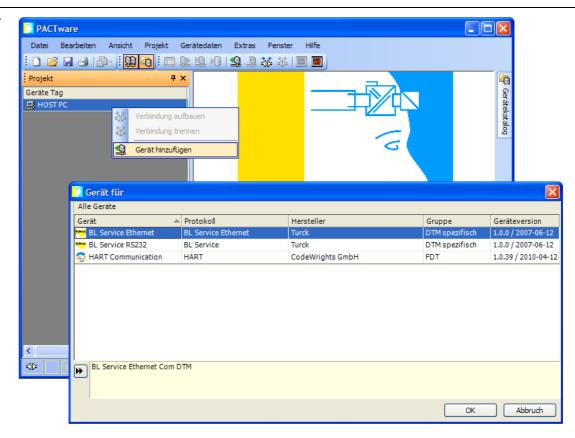


Abbildung 3-8: Busadressenmanagement

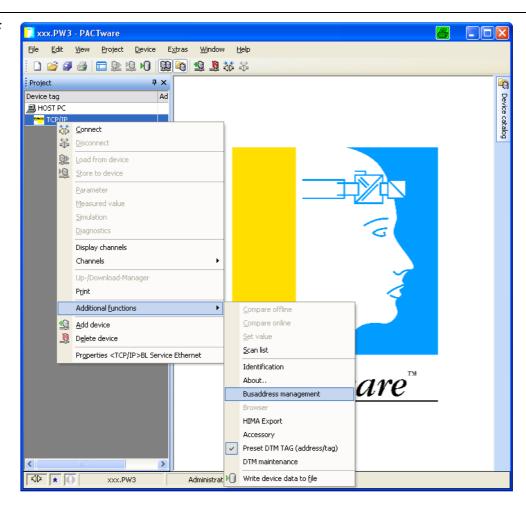
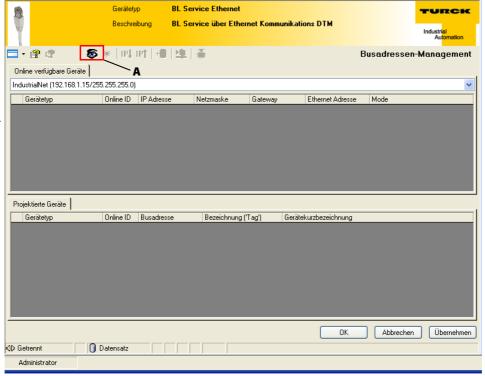



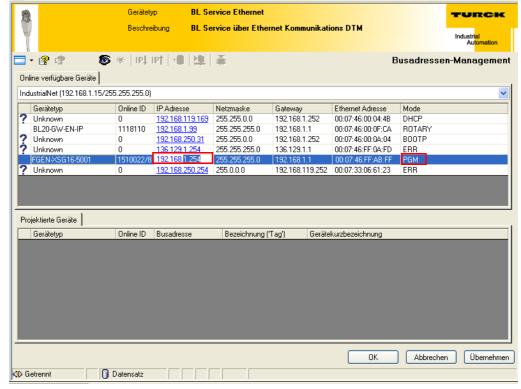
Abbildung 3-9: Suchen nach Netzwerk-Knoten im Busadressen-Management

A Suchfunktion im Busadressenmanagement

Hinweis

Möglich ist der Zugriff des IO-ASSISTANTS auf das Gerät nur, wenn dem Gerät bereits eine IP-Adresse zugewiesen wurde, siehe Adressierung (Seite 3-9).

Eine Adressvergabe über den I/O-ASSISTANT ist nur möglich, wenn die Station in Schalterstellung 500 = PGM oder 600 = PGM-DHCP betrieben wird.



Hinweis

Bei der Verwendung von Windows XP als Betriebssystem kann es zu Problemen mit der systeminternen Firewall kommen.

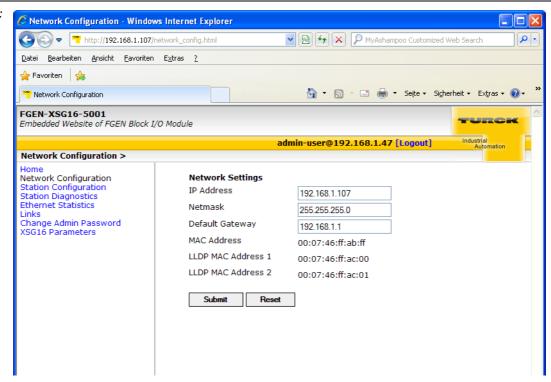
Diese verhindert möglicherweise den Zugriff der PACTware™ (I/O-ASSISTANT V3) auf Ethernet. In diesem Fall passen Sie bitte die Einstellungen Ihrer Firewall an oder deaktivieren Sie sie.

Abbildung 3-10: IP-Adresse ändern

3.5.10 Adressierung über Webserver

Die Änderung der Netzwerkeinstellungen des Gerätes kann vom Anwender mit Administrator-Rechten auch unter "Network Configuration" über den Web-Server erfolgen.

Weiterführende Information zum Webserver der FGEN-Geräte und dessen Verwendung finden Sie unter Webserver - Remote Zugriff/Konfiguration (Seite 3-18).



Hinweis

Möglich ist der Zugriff des Webservers auf das Gerät nur, wenn das Gerät bereits eine IP-Adresse hat, siehe Adressierung (Seite 3-9).

Eine Adressvergabe über den Webserver ist nur möglich, wenn die Station in Schalterstellung 500 = PGM oder 600 = PGM-DHCP betrieben wird.

Abbildung 3-11: Webserver mit Network Configuration

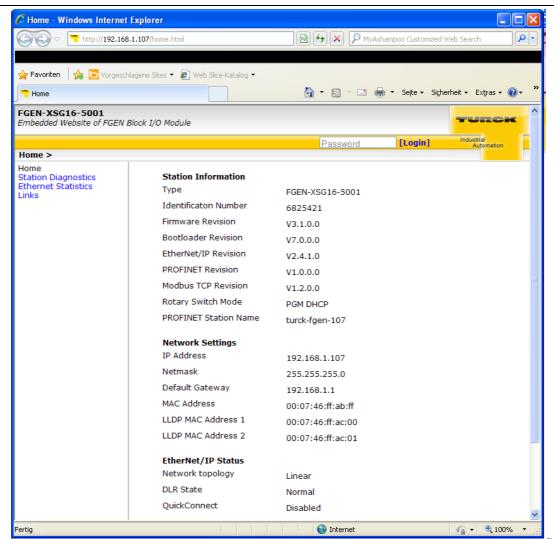
3.6 SET-Taster

Beim Betätigen des Set-Tasters wird ein Neustart des Gerätes durchgeführt.

3.7 Gerätekonfigurationsdateien

Die aktuellen Gerätekonfigurationsdateien der Stationen stehen Ihnen auf der TURCK-Homepage www.turck.com zum Download zur Verfügung.

3.8 Webserver - Remote Zugriff/Konfiguration


Hinweis

Beim Arbeiten mit dem Webserver des Moduls sollte sichergestellt sein, dass der genutzte Browser die HTML-Seiten immer neu vom Modul-Webserver anfordert (forced reload). Die Daten sollten nicht aus dem Cache des Browser geladen werden.

Nur so ist sichergestellt, dass immer die aktuellen Daten (Modulart, Modulstatus, etc.) angezeigt werden.

Tastenkombination für Browser: Internet Explorer: Umschalt + F5 Mozilla Firefox: Strg + F5

Abbildung 3-12: Webserver der FGEN-Station

3.8.1 IP-Adresse

Den Webserver rufen Sie in Ihrem Internet-Browser unter der IP-Adresse des Gerätes auf.

Wurde noch keine IP-Adresse vergeben (DHCP-Server, BootP-Server etc.) kann der Webserver unter der Default-IP-Adresse 192.168.1.254 aufgerufen werden.

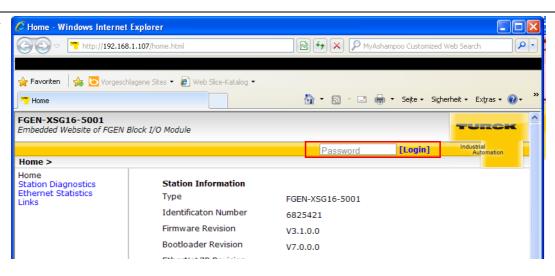
3.8.2 Zugriffsrechte

Ohne Administrator-Rechte kann auf Daten wie allgemeine Produkt- und Diagnosedaten etc. nur lesend zugegriffen werden.

Um Administrator-Rechte zu erhalten müssen Sie sich auf dem Webserver einloggen, siehe Login/Passwort (Seite 3-19).

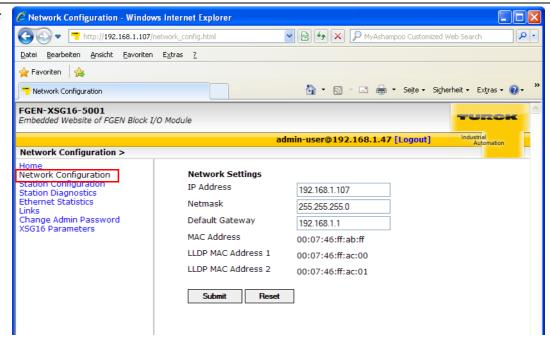
3.8.3 Login/Passwort

Loggen Sie sich mit Hilfe des Default-Passworts "password" auf dem Webserver ein.


Das Default-Passwort kann vom Administrator jederzeit unter Change Admin Password (Seite 3-22) geändert werden.

Hinweis

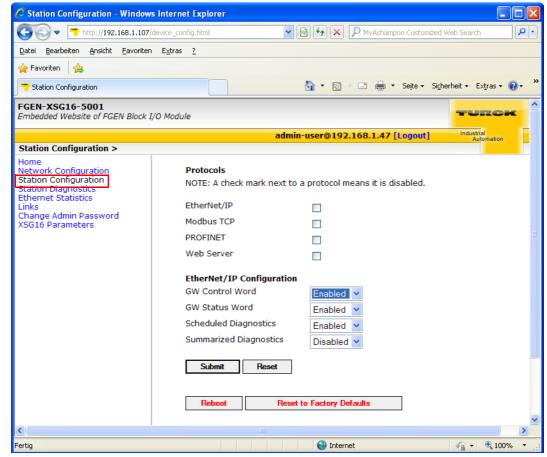
Ein Zurücksetzen des Gerätes auf die Default-Einstellungen über die Schalterstellung 900 "F_Reset" führt auch zum Zurücksetzen des Passwortes auf "password".


Abbildung 3-13: Webserver "Start-Seite"

3.8.4 Network Configuration

Im Bereich "Network Configuration" können Netzwerk-relevante Einstellungen vorgenommen werden.

Abbildung 3-14: Webserver "Network Configuration"



3.8.5 Station Configuration

Der Bereich "Station Configuration" dient zur Parametrierung der Feldbusschnittstelle des Gerätes.

Abbildung 3-15: Webserver "Station Configuration"

3.8.6 Station Diagnostics

Diagnosemeldungen der Geräte werden im Bereich "Station Diagnostics" angezeigt.

3.8.7 Ethernet Statistics

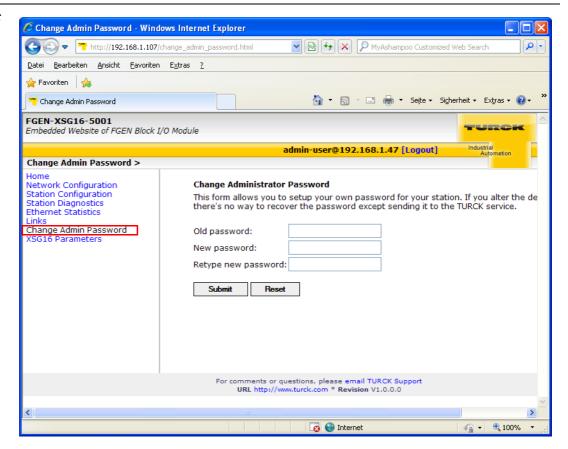
Der Bereich "Ethernet Statistics" zeigt Informationen wie Port-Status, Telegramm- und Fehlerzähler, etc. Die Seite kann vor allem bei der Analyse von Netzwerkproblemen hilfreich sein.

3.8.8 Links

Diese Seite enthält z. B. einen Link zur Produktseite auf der TURCK-Homepage.

3.8.9 Change Admin Password

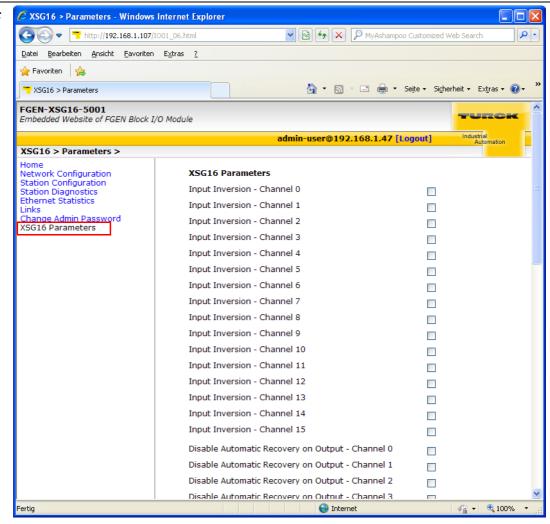
Vergeben Sie hier ein individuelles Passwort für Administrator-Rechte.


Default-Passwort: "password"

Hinweis

Ein Zurücksetzen des Gerätes auf die Default-Einstellungen über die Schalterstellung 900 "F_Reset" führt auch zum Zurücksetzen des Passwortes auf "password".

Abbildung 3-16: Change Admin password



3.8.10 Parameters

Der Bereich "Parameters" dient zur Parametrierung der I/O-Kanäle der Stationen.

Abbildung 3-17: Webserver "Parameters"

3.9 Status- und Control-Wort der FGEN-Stationen

Sowohl das Status- als auch das Control-Wort werden in die Prozessdaten der Stationen gemappt.

- EtherNet/IP™ Bei EtherNet/IP™ kann das Mappen deaktiviert werden (siehe Gateway Class (VSC 100), GW Status Register (Seite 7-30) und GW Control Register (Seite 7-30).
- Modbus TCP
 → siehe Register 100Ch: "Stations-Status" (Seite 9-16)
- PROFINET→ siehe PROFINET-Error Codes (Seite 11-4)

3.9.1 Status-Wort

	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status	0	U _L	-	-	-	-	-	-	Diag Warn
	1	-	FCE	-	-	CFG	COM	U _B	-

Bedeutung der Status-Bits

Tabelle 3-3: Bedeutung der Status-Bits	Name	Bedeutung
	Diag Warn	Sammeldiagnose des Gerätes. Mindestens 1 Kanal sendet eine Diagnose.
	U _L	Lastspannung nicht im zulässigen Bereich (18 bis 30 V)
	U _B	Systemspannung nicht im zulässigen Bereich (18 bis 30 V)
	СОМ	I/O Communication Lost Error Keine Kommunikation auf dem I/O-Modulbus.
	CFG	I/O CfgModified Error Die I/O-Konfiguration ist inkompatibel verändert worden.
	FCE	Force Mode Active Error Der Force-Mode ist aktiviert, d. h. die Ausgangszustände entsprechen unter Umständen nicht mehr den, vom Feldbus gesendeten, Vorgaben.

3.9.2 Control-Wort

Das Control-Wort hat derzeit keine Funktion, ist aber für zukünftigen Gebrauch reserviert.

4 Digitale Eingänge FGEN-IM16-x001

4.1	FGEN-IM16-x001	4-2
4.1.1	Technische Daten	4-2
	Anschlussbilder	
	– Ethernet	
	- Spannungsversorgung	
	– Eingang M12 x 1	
4.1.3	Parameter	
4.1.4	Diagnosemeldungen	4-3

4.1 FGEN-IM16-x001

Die Station besitzt 16 digitale Eingänge für 3-Draht pnp-Sensoren.

4.1.1 Technische Daten

Tabelle 1: Technische Daten FGEN-IM16-x0001

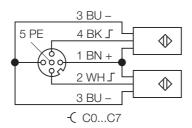
Typenbezeichnung	FGEN-IM16-x001		
Kanalanzahl	(16) 3-Draht pnp-Sensoren		
Versorgung (aus U _B)	1830 V DC aus Betriebsspannung		
Speisestrom	< 120 mA pro Kupplung, kurzschlussfest		
Schaltschwelle AUS/AN	2 mA/4 mA		
Signalspannung Low Pegel	-3 bis 5 VDC, (EN 61131-2, Typ 1 und 3)		
Signalspannung High Pegel	11 bis 30 VDC (EN 61131-2, Typ 1 und 3)		
Max. Eingangsstrom	6 mA		
Einschaltverzögerung	2,5 ms		
Schaltfrequenz	≤ 500 Hz		
Potentialtrennung	galvanische Trennung zu U_L und Ethernet		

Hinweis

Allgemeine technische Daten zu den Produkten der FGEN-Reihe finden Sie in Kapitel 3.

4.1.2 Anschlussbilder

Ethernet


→ Ethernet (Seite 3-7)

Spannungsversorgung

→ Betriebs-/Lastspannung (Seite 3-7)

Eingang M12 x 1

Abbildung 4-1: Anschlussbild, Eingang M12 x 1

4.1.3 Parameter

Tabelle 4-1: Parameter	Parametername	Wert	Beschreibung
A Default-	Digitaleingang	0 = normal A	
Einstellung	(Inv. Dlx)	1 = invertiert	Invertierung des Digitaleingangsignals

Näheres zum Parameterdatenmapping finden Sie in den feldbusspezifischen Kapiteln.

- EtherNet/IP™: Kapitel 7.4.4, Digital Versatile Module Class (VSC117) (Seite 7-34) ff.
- Modbus TCP: Kapitel 9.3.2, Registermapping der FGEN-Stationen (Seite 9-11) ff.
- PROFINET: Kapitel 11.4, Parameter (Seite 11-5)

4.1.4 Diagnosemeldungen

Tabelle 4-2: Diagnosemel- dungen	Diagnose	Beschreibung
	SCSx	Kurzschluss an der Sensorversorgung des jeweiligen Kanals

Näheres zum Diagnosedatenmapping finden Sie in den feldbusspezifischen Kapiteln.

- EtherNet/IP™: Kapitel 7.4.4, Process Data Class (VSC102) (Seite 7-31)
- Modbus TCP: Kapitel 9.3.2, Registermapping der FGEN-Stationen (Seite 9-11) ff.
- PROFINET: Kapitel 11.3, PROFINET-Error Codes (Seite 11-4)

Digitale Eingänge FGEN-IM16-x001

5 Digitale Ausgänge FGEN-OM16-x001

5-2
5-2
5-2
5-2
5-2
5-2
5-3
5-3

5.1 FGEN-OM16-x001

Die Station besitzt 16 digitale Ausgänge für DC Aktuatoren.

5.1.1 Technische Daten

Tabelle 5-1:
Technische
Daten
FGEN-OM16-
x0001

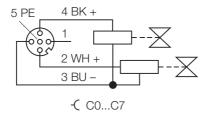
Typenbezeichnung	FGEN-OM16-x001		
Kanalanzahl	(16) DC Aktuatoren		
Ausgangspannung	1830 V DC aus Lastspannung		
Ausgangsstrom pro Kanal	2,0 A, kurzschlussfest		
Lastart	ohmsch, induktiv, Lampenlast		
Gleichzeitigkeitsfaktor	0,25 für Gesamtmodul 1×2 A oder 2×1 A pro Steckplatz, dabei jedoch nur max. 9 A Gesamtstrom pro Modul		
Potentialtrennung	galvanische Trennung zu U _B und Ethernet		

Hinweis

Allgemeine technische Daten zu den Produkten der FGEN-Reihe finden Sie in Kapitel 3.

5.1.2 Anschlussbilder

Ethernet


→ Ethernet (Seite 3-7)

Spannungsversorgung

→ Betriebs-/Lastspannung (Seite 3-7)

Ausgang M12 x 1

Abbildung 5-1: Anschlussbild, Ausgang M12 x 1

5.1.3 Parameter

Tabelle 5-2: Parameter	Parametername	Wert	Beschreibung	
A Default- Einstellung	Ausgang bei Überstrom (SROx)	0 = aktiviert A	Der Ausgang schaltet sich bei Überstrom automatisch wieder ein.	
		1 = deaktiviert	Der Ausgang schaltet sich bei Überstrom erst nach Zurück- nehmen und erneutem Setzen des Schaltsignals wieder ein.	

Näheres zu den Parametern finden Sie in den feldbusspezifischen Kapiteln.

- EtherNet/IP™: Kapitel 7.4.4, Digital Versatile Module Class (VSC117) (Seite 7-34) ff.
- Modbus TCP: Kapitel 9.3.2, Registermapping der FGEN-Stationen (Seite 9-11) ff.
- PROFINET: Kapitel 11.4, Parameter (Seite 11-5)

5.1.4 Diagnosemeldungen

Tabelle 5-3: Diagnosemel- dungen	Diagnose	Beschreibung
	SCOx	Kurzschluss am Ausgang des jeweiligen Kanals

Näheres zum Diagnosedatenmapping finden Sie in den feldbusspezifischen Kapiteln.

- EtherNet/IP™: Kapitel 7.4.3, Process Data Class (VSC102) (Seite 7-31) ff.
- Modbus TCP: Kapitel 9.3.2, Registermapping der FGEN-Stationen (Seite 9-11) ff.
- PROFINET: Kapitel 11.3, PROFINET-Error Codes (Seite 11-4)

Digitale Ausgänge FGEN-OM16-x001

6 Digitale Ein-/Ausgänge FGEN-IOM88-x001, FGEN-XSG16-x001

6.1	FGEN-IOM88-x001	6-2
6.1.1	Technische Daten	6-2
6.1.2	Anschlussbilder	6-3
	_	6-3
	– Ethernet	6-3
	– Spannungsversorgung	6-3
6.1.3	Parameter	6-3
6.1.4	Diagnose meldungen	6-4
6.2	FGEN-XSG16-000x	6-5
6.2.1	Technische Daten	6-5
6.2.2	Anschlussbilder	6-6
	– Ethernet	6-6
	- Spannungsversorgung	6-6
6.2.3	Parameter	6-7
6.2.4	Diagnosemeldungen	6-7

6.1 FGEN-IOM88-x001

Die Station besitzt 8 digitale Eingänge für 3-Draht pnp-Sensoren und 8 digitale Ausgänge für DC Aktuatoren.

6.1.1 Technische Daten

Tabelle 6-1: Technische Daten FGEN-IOM88x001

Bezeichnung	FGEN-IOM88-x001			
Eingänge	(8) 3-Draht pnp-Sensoren			
Versorgung (aus U _B)	1830 V DC aus Betriebsspannung			
Speisestrom	< 120 mA pro Kupplung, kurzschlussfest			
Schaltschwelle AUS/AN	2 mA/ 4 mA			
Signalspannung Low Pegel	-3 bis 5 VDC, (EN 61131-2, Typ 1und 3)			
Signalspannung High Pegel	11 bis 30 VDC (EN 61131-2, Typ 1 und 3)			
Max. Eingangsstrom	6 mA			
Einschaltverzögerung	2,5 ms			
Schaltfrequenz	≤ 500 Hz			
Potentialtrennung	galvanische Trennung zu U _L und Ethernet			
Ausgänge	(8) DC-Aktuatoren			
Ausgangspannung	1830 V DC aus Lastspannung			
Ausgangsstrom pro Kanal	2,0 A, kurzschlussfest			
Lastart	ohmsch, induktiv, Lampenlast			
Gleichzeitigkeitsfaktor	0,25 für Gesamtmodul 1 × 2 A oder 2 × 1 A pro Steckplatz, dabei jedoch nur max. 9 A Gesamtstrom pro Modul			
Potentialtrennung	galvanische Trennung zu U _B und Ethernet			

Hinweis

Allgemeine technische Daten zu den Produkten der FGEN-Reihe finden Sie in Kapitel 3.

6.1.2 Anschlussbilder

Ethernet

→ Ethernet (Seite 3-7)

Spannungsversorgung

→ Betriebs-/Lastspannung (Seite 3-7)

Abbildung 6-1: Anschlussbild, Eingang M12 x 1

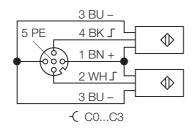
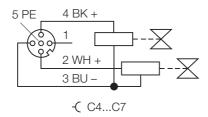



Abbildung 6-2: Anschlussbild, Ausgang M12 x 1

6.1.3 Parameter

Tabelle 6-2: Parameter	Parametername	Wert	Beschreibung
A Default-	Digitaleingang	0 = normal A	
Einstellung	(Inv. Dlx)	1 = invertiert	Invertierung des Digitaleingangsignals
	Ausgang bei Überstrom (SROx)	0 = aktiviert A	Der Ausgang schaltet sich bei Überstrom automatisch wieder ein.
		1 = deaktiviert	Der Ausgang schaltet sich bei Überstrom erst nach Zurück- nehmen und erneutem Setzen des Schaltsignals wieder ein.

Näheres zum Parameterdatenmapping finden Sie in den feldbusspezifischen Kapiteln.

- EtherNet/IP™: Kapitel 7.4.4, Digital Versatile Module Class (VSC117) (Seite 7-34) ff.
- Modbus TCP: Kapitel 9.3.2, Registermapping der FGEN-Stationen (Seite 9-11) ff.
- PROFINET: Kapitel 11.4, Parameter (Seite 11-5)

6.1.4 Diagnosemeldungen

Tabelle 6-3: Diagnosemel- dungen	Diagnose	Beschreibung
	SCSx	Kurzschluss an der Sensorversorgung des jeweiligen Kanals
	SCOx	Kurzschluss am Ausgang des jeweiligen Kanals

Näheres zum Diagnosedatenmapping finden Sie in den feldbusspezifischen Kapiteln.

- **■** EtherNet/IP[™]: Kapitel 7.3.3, Prozessdatenmapping FGEN-IM16-x001 (Seite 7-11) ff.
- Modbus TCP: Kapitel 9.3.2, Registermapping der FGEN-Stationen (Seite 9-11) ff.
- PROFINET: Kapitel 11.3, PROFINET-Error Codes (Seite 11-4)

6.2 FGEN-XSG16-000x

Die Station besitzt sechzehn Kanäle, die je nach Applikationserfordernissen unterschiedlich konfiguriert werden können. Insgesamt lassen sich bis zu sechzehn 3-Draht pnp-Sensoren bzw. sechzehn DC-Aktuatoren mit einem maximalen Ausgangsstrom von 1,4 A pro Ausgang anschließen.

6.2.1 Technische Daten

Tabelle 6-4: Technische Daten FGEN-XSG16-x00x

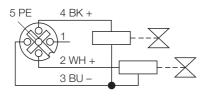
Bezeichnung	FGEN-XSG16-x001		
Eingänge	(16) 3-Draht pnp-Sensoren		
Versorgung (aus U _B)	1830 V DC aus Betriebsspannung		
Speisestrom	< 120 mA pro Kupplung, kurzschlussfest		
Schaltschwelle AUS/AN	2 mA/ 4 mA		
Signalspannung Low Pegel	-3 bis 5 VDC, (EN 61131-2, Typ 1 und 3)		
Signalspannung High Pegel	11 bis 30 VDC (EN 61131-2, Typ 1 und 3)		
Max. Eingangsstrom	6 mA		
Einschaltverzögerung	2,5 ms		
Schaltfrequenz	≤ 500 Hz		
Potentialtrennung galvanische Trennung zu U _L und Ethernet			
Ausgänge	(16) DC-Aktuatoren		
Ausgangspannung	1830 V DC aus Lastspannung		
Ausgangsstrom pro Kanal	2,0 A, kurzschlussfest		
Lastart	ohmsch, induktiv, Lampenlast		
Gleichzeitigkeitsfaktor	0,25 für Gesamtmodul 1 × 2 A oder 2 × 1 A pro Steckplatz, dabei jedoch nur max. 9 A Gesamtstrom pro Modul		
Potentialtrennung	galvanische Trennung zu U _B und Ethernet		

Hinweis

Allgemeine technische Daten zu den Produkten der FGEN-Reihe finden Sie in Kapitel 3.

6.2.2 Anschlussbilder

Ethernet


→ Ethernet (Seite 3-7)

Spannungsversorgung

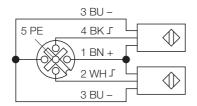
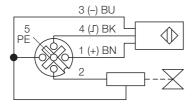
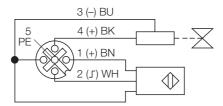

→ Betriebs-/Lastspannung (Seite 3-7)

Abbildung 6-3: Anschlussbilder


Anschluss von 2 Aktuatoren:



Anschluss von 2 Sensoren:

Kombination von Sensor und Aktuator:

6.2.3 Parameter

Tabelle 6-5: Parameter	Parametername	Wert	Beschreibung
A Default-	Digitaleingang	0 = normal A	
Einstellung	(Inv. DI)	1 = invertiert	Invertierung des Digitaleingangsignals
	Ausgang bei Überstrom	0 = aktiviert A	Der Ausgang schaltet sich bei Überstrom automatisch wieder ein.
	(SROx)	1 = deaktiviert	Der Ausgang schaltet sich bei Überstrom erst nach Zurück- nehmen und erneutem Wiedereinschalten wieder ein.
	Ausgang	0 = deaktiviert	
		1 = aktiviert A	

Näheres zum Parameterdatenmapping finden Sie in den feldbusspezifischen Kapiteln.

- EtherNet/IP™: Kapitel 7.3.3, Prozessdatenmapping FGEN-XSG16-x001 (Seite 7-17) ff.
- Modbus TCP: Kapitel 9.3.2, Registermapping der FGEN-Stationen (Seite 9-11) ff.
- PROFINET: Kapitel 11.4, Parameter (Seite 11-5)

6.2.4 Diagnosemeldungen

Tabelle 6-6: Diagnosemel- dungen	Diagnose	Beschreibung
	SCSx	Kurzschluss an der Sensorversorgung des jeweiligen Kanals
	SCOx	Kurzschluss am Ausgang des jeweiligen Kanals

Näheres zum Diagnosedatenmapping finden Sie in den feldbusspezifischen Kapiteln.

- EtherNet/IP™: Kapitel 7.3.3, Prozessdatenmapping FGEN-IM16-x001 (Seite 7-11) ff.
- Modbus TCP: Kapitel 9.3.2, Registermapping der FGEN-Stationen (Seite 9-11) ff.
- PROFINET: Kapitel 11.3, PROFINET-Error Codes (Seite 11-4)

Digitale Ein-/Ausgänge FGEN-IOM88-x001, FGEN-XSG16-x001

7 Implementierung von EtherNet/IP™

7.1	EtherNet/IP Kommunikations-Profil	7-3
7.1.1	I/O Messages	7-3
7.1.2	Explicit Messages	
7.1.3	Kommunikations-Profil für FGEN	7-3
	- Unicast	7-3
	- Multicast	7-3
	- COS I/O Connection	7-4
	- Cyclic I/O Connection	
	- UCMM	
	– Connected Explicit Messaging	7-4
7.2	QC - QuickConnect	7-5
7.2.1	Allgemeines	7-5
7.2.2	QuickConnect in FGEN	7-5
	- QuickConnect über Configuration Assembly	7-6
	QuickConnect über Class Instance Attribute	7-6
7.3	Klassen und Instanzen der EtherNet/IP™-Stationen	7-7
7.3.1	EtherNet/IP™ Standardklassen	7-7
7.3.2	Identity Objekt (0×01)	7-8
7.3.3	Assembly Object (0×04)	7-10
	- Configuration Assembly	
	- Prozessdaten-Instanzen	
	- Prozessdatenmapping FGEN-IM16-x001	
	- Prozessdatenmapping FGEN-OM16-x001	
	- Prozessdatenmapping FGEN-IOM88-x001	
	- Prozessdatenmapping FGEN-XSG16-x001	
7.3.4	 Bedeutung der Prozessdatenbits Connection Manager Object (0×06) 	
7.3. 4 7.3.5	TCP/IP Interface Object (0×F5)	
7.3.6	Ethernet Link Object (0×F6)	
7.4	VSC-Vendor Specific Classes	7-29
7.4.1	Class Instance der VSCs	
7.4.1 7.4.2	Gateway Class (VSC 100)	
, .π. <u>∠</u>	- Class instance	
	- Object Instance 1	
	- Object Instance 2	
7.4.3	Process Data Class (VSC102)	
	- Class instance	7-32
	- Object Instance 1, Standard Eingangsprozessdaten (komprimiert)	7-32
	- Object Instance 3, Diagnoseinstanz	
	- Object Instance 4, COS/CYCLIC Instanz	
7.4.4	Digital Versatile Module Class (VSC117)	
	– Objekt-Instanz	
7.4.5	Miscellaneous Parameters Class (VSC 126)	
	– Instanz 1/ Instanz 2	7-36
7.5	Diagnosemeldungen über die Prozessdaten	7-37
7.5.1	Sammeldiagnose (Summarized Diagnostics)	7-37
7.5.2	Herstellerspezifische Diagnose (Scheduled Diagnostics)	7-37

7.1 EtherNet/IP Kommunikations-Profil

EtherNet/IP basiert auf einem verbindungsorientierten Kommunikationsmodell. Dies bedeutet, ein Datenaustausch ist nur über definierte, den Geräten zugewiesene, Verbindungen möglich.

Die Kommunikation zwischen Knoten im EtherNet/IP-Netzwerk kann entweder über I/O-Messages (I/O-Nachrichten) oder Explicit Messages (explizite Nachrichten) erfolgen.

7.1.1 I/O Messages

I/O Messages dienen zur Übertragung hochpriorer Prozess- oder Applikationsdaten.

Die Kommunikation zwischen den Teilnehmern im EtherNet/IP-Netzwerk erfolgt dabei nach dem Server/Client-Modell.

Ein Applikationsobjekt in einem Gerät, das Daten "produziert" (Producer), überträgt diese an ein oder mehrere Applikationsobjekte in anderen Geräten, die Daten "konsumieren" (Consumer). Es ist dabei möglich, dass Daten zu mehreren Applikationsobjekten in einem einzigen Gerät übertragen werden.

7.1.2 Explicit Messages

Explicit Messages dienen zur Übertragung niederpriorer Konfigurationsdaten, genereller Managementdaten oder Diagnosedaten zwischen zwei bestimmten Knoten. Hierbei handelt es sich um eine Unicast-Verbindung (Punkt-zu-Punkt-Verbindung) in einem Server/Client-System, bei der eine Anfrage des Clients (Request) immer eine Antwort des Servers (response) erfordert.

- Message Router Request Der Message Router Request besteht aus einem Service-Code, der Pfadgröße, einem Message Router-Pfad und Service-Daten. Ein EPATH im Message Router-Pfad zeigt das Ziel-Objekt an.
- Message Router Response Die Message Router Response besteht aus einem Service-Feld, in dem das höchstwertigste Bit gesetzt ist. Dies ist ein Echo des Service-Codes in der Anfrage (Request), in der das höchstwertigste Bit gesetzt ist. Auf den Service-Code folgt ein reserviertes Byte, auf welches wiederum der generelle Status-Code folgt.

7.1.3 Kommunikations-Profil für FGEN

FGEN arbeitet im Netzwerk als EtherNet/IP-Server; der Scanner des übergeordneten Controllers ist der EtherNet/IP-Client.

Die folgenden EtherNet/IP Kommunikationstypen werden unterstützt:

- Unicast
- Multicast
- Cyclic Connection
- Unconnected (UCMM) Explicit Messaging
- Connected Explicit Messaging

Unicast

Eine Punkt-zu-Punkt Verbindung zwischen lediglich zwei Knoten.

Multicast

Ein Paket mit einer speziellen Adresse, das mehrere Knoten im Netzwerk empfangen können.

COS I/O Connection

COS (Change Of State) I/O Connections (I/O-Verbindungen bei Zustandsänderungen) bauen ereignisgesteuerte Verbindungen auf. Dies bedeutet, dass EtherNet/IP-Geräte Nachrichten generieren, sobald eine Zustandsänderung stattfindet.

Cyclic I/O Connection

Nachrichten werden - über einen Zeit-Generator gesteuert - angestoßen.

UCMM

Das Gateway ermöglicht Explicit Messaging über den UCMM-Port (Unconnected Message Manager Port).

UCMM-basiertes Explicit Messaging wird in der Regel für zufällige, nicht periodische Anfragen verwendet.

Für regelmäßigen Datenverkehr ist UCMM nicht zu empfehlen, da die Anzahl der Nachrichten, die an dem UCMM-Port eines Produktes empfangen werden können, in der Regel auf wenige Nachrichten limitiert ist. Ist dieses Limit einmal erreicht, werden nachfolgende Anfragen ignoriert und müssen nochmals gestellt werden.

Connected Explicit Messaging

CIP "Common Industrial Protocol" ist ein Verbindungs-basiertes System. Fast jede Art von Kommunikation zwischen Knoten erfolgt über eine Verbindung.

Eine Verbindung ist ein Pfad oder eine virtuelle Verbindung zwischen zwei oder mehreren Endpunkten in einem System zum Zweck des möglichst effektiven Datentransfers.

Die Connection ID (Verbindungs-Kennziffer) ist eine Kennziffer, die einer bestimmten Kommunikationsbeziehung zugeordnet ist. Empfangende Knoten decodieren diese Kennziffer gesendeter Daten, um zu erfahren, ob die Daten von ihnen verarbeitet werden müssen oder nicht.

7.2 QC - QuickConnect

7.2.1 Allgemeines

QuickConnect ermöglicht es einer Steuerung, Verbindungen zu EtherNet/IP™-Knoten in weniger als 300 ms nach Einschalten der Versorgung des EtherNet/IP™-Netzwerkes herzustellen. Notwendig wird der schnelle Anlauf der Geräte vor allem bei schnellen Werkzeugwechseln an Roboterarmen z. B. in der Automobilindustrie.

Hinweis

Zur korrekten Ethernet-Verkabelung bei FGEN in QC-Applikationen, siehe Ethernet-Anschluss bei QC-/FSU-Applikationen (Seite 3-7).

7.2.2 QuickConnect in FGEN

TURCK FGEN-stations support QuickConnect.

QuickConnect wird aktiviert:

 über die Konfigurationsdaten im Steuerungsprogramm per Assembly Class 0×04, Configuration Assembly 106, Bit 9 = 1 (siehe auch Kapitel 8, Aktivieren von QuickConnect (Seite 8-14))

oder

über Class Instance Attribute in der
 TCP/IP Interface Klasse 245 (0×F5), Instanz 1, Attribut 12 (0×C0)

Hinweis

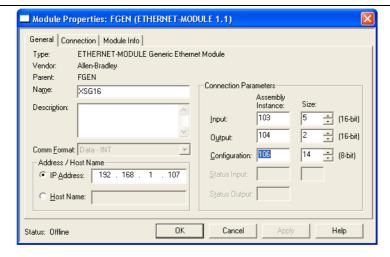
Das Aktivieren von QuickConnect bewirkt automatisch auch das Anpassen aller notwendigen Port- Eigenschaften:

Autonegotiation = deaktiviert

Übertragungsgeschwindigkeit = 100BaseT

Duplex = Vollduplex

Topologie = linear


AutoMDIX = deaktiviert

QuickConnect über Configuration Assembly

Die Configuration Assembly ist Teil der Assembly Class des Gerätes und wird bei der Konfiguration der Station in der RS Logix-Software von Rockwell Automation wie folgt definiert:

Abbildung 7-1: Configuration Assembly

Hinweis

Weiterführende Informationen zur Konfiguration der FGEN-Stationen in der Rockwell Software RS Logix finden Sie in Kapitel 8, Applikationsbeispiel: FGEN für EtherNet/IP™ mit Allen Bradley PLC und RS Logix 5000.

QuickConnect über Class Instance Attribute

Sie aktivieren QuickConnect mittels Class Instance Attribute über die folgende Einstellung:

Class	Instance	Attribute	Value
245 (0×F5)	45 (0×F5) 1 (0×01)		0: disabled (default)
			1: enabled

7.3 Klassen und Instanzen der EtherNet/IP™-Stationen

7.3.1 EtherNet/IP™ Standardklassen

Die FGEN-Stationen unterstützen die folgenden EtherNet/IP™-Standardklassen gemäß CIP-Spezifikation.

Tabelle 7-1:
EtherNet/IP™
Standardklas-
sen

Class Code	Objekt-Name	
01 (0×01)	Identity Objekt (0×01)	
04 (0×04)	Assembly Object (0×04)	
06 (0×06)	Connection Manager Object (0×06)	
245 (0×F5)	TCP/IP Interface Object (0×F5)	
246 (0×F6)	Ethernet Link Object (0×F6)	

7.3.2 Identity Objekt (0×01)

Die folgende Beschreibung ist der CIP-Spezifikation, Vol 1 Rev. 2.1 der ODVA & ControlNet International Ltd. entnommen und wurde auf die FGEN-Produkte angepasst.

Klassen-Attribute

Tabelle 7-2: Attr. Nr. Attributname Klassen- Attribute		Get/ Set	Тур	Wert	
Attribute	1 (0×01)	REVISION	G	UINT	1
	2 (0×02)	MAX OBJECT INSTANCE	G	UINT	1
	6 (0×06)	MAX CLASS ATTRIBUTE	G	UINT	7
	7 (0×07)	MAX INSTANCE ATTRIBUTE	G	UINT	7

Instanz-Attribute

Tabelle 7-3: Instanz-	Attr. Nr.	Attributname	Get/ Set	Тур	Beschreibung
Attribute	1 (0×01)	VENDOR	G	UINT	Enthält die Hersteller-ID. TURCK = 48
	2 (0×02)	PRODUCT TYPE	G	UINT	Zeigt den allgemeinen Produkttyp an. Communications Adapter $12_{dez} = 0 \times 0C$
	3 (0×03)	PRODUCT CODE	G	UINT	Identifiziert ein bestimmtes Produkt eines Gerätetyps. Default: 27247 _{dez} = 6A6F
	4 (0×04)	REVISION Major Minor	G	STRUCT OF: USINT USINT	Angabe der Revision des Gerätes, dass durch das Identity Objekt dargestellt wird. 0×01 0×06
	5 (0×05)	DEVICE STATUS	G	WORD	See Tabelle 7-4: Device Status
	6 (0×06)	SERIAL NUMBER	G	UDINT	Enthält die Ident-Nr. des Produktes (die letzten 3 Bytes der MAC-ID).
	7 (0×07)	PRODUCT NAME LENGTH NAME	G	STRUCT OF: USINT STRING [13]	z. B.: FGEN-XSG16-5001

Implementierung von EtherNet/IP™

Device Status

Tabelle 7-4:	Bit	Name	Definition				
Device Status	0 bis 1	reserviert	Default = 0				
	2	Configured	TRUE = 1 → Die Applikation im Gerät wurde konfiguriert (≠ Default- Einstellung).				
	3 reserviert		Default = 0				
	4 bis 7	Extended Device Status	0011 = keine I/O-Verbindung hergestellt 0110 = Mindestens eine I/O-Verbindung ist im RUN-Modus 0111 = Mindestens eine I/O-Verbindung hergestellt, alle im IDLE-Modus Alle anderen Einstellungen = reserviert				
	8 bis 15	reserviert	Default = 0				

Allgemeine Dienste (Common Services)

Tabelle 7-5:	Service-Code	Klasse	Instanz-	Service-Name
Common Ser- vices	01 (0×01)	Ja	Ja	Get_Attribute_All Liefert eine vordefinierte Liste der Objektattribute.
	05 (0×05)	Nein	Ja	Reset Startet den Reset-Dienst für das Gerät.
	14 (0×0E)	Ja	Ja	Get_Attribute_Single Liefert den Inhalt eines angegebenen Attributs zurück.
	16 (0×10)	Nein	Nein	Set_Attribute_Single Verändert ein einzelnes Attribut.

7.3.3 Assembly Object (0×04)

Das Assembly Objekt verbindet Attribute mehrerer Objekte, was es ermöglicht, gezielt Daten von einem Objekt zum anderen zu senden, oder gezielt zu empfangen.

Die folgende Beschreibung ist der CIP-Spezifikation, Vol 1 Rev. 2.1 der ODVA & ControlNet International Ltd. entnommen und wurde auf die FGEN-Produkte angepasst.

Klassen-Attribute

Tabelle 7-6: Klassen-	Attr. Nr.	Attributname	Get/ Set	Тур	Wert
Attribute	1 (0×01)	REVISION	G	UINT	2
	2 (0×02)	MAX OBJECT INSTANCE	G	UINT	104

Instanz-Attribute

Tabelle 7-7: Instanz-	Attr. Nr.	Attributname	Get/ Set	Тур	Beschreibung
Attribute	3 (0×03)	DATA	S	ARRAY OF BYTE	
	4 (0×04)	SIZE	G	UINT	Anzahl der Bytes im Attr. 3 256 oder variabel

Allgemeine Dienste (Common Services)

Tabelle 7-8:	Service-Code	Klasse	Instanz-	Service-Name			
Common Ser- vices	01 (0×01)	Ja	Ja	Get_Attribute_All			
	14 (0×0E)	Nein	Ja	Get_Attribute_Single			

Configuration Assembly

Instanz 106

14 Byte Konfigurationsdaten

Byte 9, Bit 1 wird genutzt, um QuickConnect an der Station zu aktivieren (siehe auch QuickConnect über Configuration Assembly (Seite 7-5)).

Prozessdaten-Instanzen

Instanz 101

Enthält die Eingangsdaten der Station (statische Länge 256 Byte)

- 2 Byte Status-Informationen (siehe Seite 3-17)
- + Prozessdaten

Instanz 102

Enthält die Ausgangsdaten der Station (statische Länge 256 Byte)

- 2 Byte Control-Daten (gemappt, aber nicht definiert)
- + Prozessdaten

Instanz 103 + Instanz 104

Ein- und Ausgabeinstanzen mit variabler Größe. Die Größe der Assembly-Daten wird zuvor exakt berechnet um die Stationskonfiguration, die Diagnose etc. zu gewährleisten.

- Input Assembly Instanz: 103
- Output Assembly Instanz: 104

Die tatsächliche Größe jeder Assembly Instanz kann über das Assembly Objekt (Instanz 0×67 , Attribut 0×04 ermittelt werden und kann zwischen 2 und 496 Byte groß sein.

Prozessdatenmapping FGEN-IM16-x001

Keine Diagnose,
 Status- und Control-Word können ausgeblendet werden, siehe Seite 3-24

IN = 4 Byte **OUT** = 2 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Status	0	-	-	-	-	-	-	-	Diag Warn	
	1	-	FCE	-	-	CFG	COM	U _B	-	
Ein- gänge	2	DI7 C3P2	DI6 C3P4	DI5 C0P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4	
	3	DI15 C7P2	DI14 C7P4	DI13 C6P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C4P4	
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Control	0		Control-Word (MSB)							
	1				Control-V	Vord (LSB)				

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Sammeldiagnose (Summarized Diagnostic) aktiviert, siehe Seite 7-36

IN = 6 Byte **OUT** = 2 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Status	0	-	-	-	-	-	-	-	Diag Warn	
	1	-	FCE	-	-	CFG	COM	U _B	-	
Ein- gänge	2	DI7 C3P2	DI6 C3P4	DI5 C0P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 COP4	
	3	DI15 C7P2	DI14 C7P4	DI13 C6P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C4P4	
Diag-	4	-	-	-	-	-	-	-	I/O Diag	
nose	5	-	-	-	-	-	-	-	-	
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Control	0		Control-Word (MSB)							
	1		Control-Word (LSB)							

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Herstellerspezifische Diagnose (Scheduled Diagnostic) aktiviert, siehe Seite 7-36

IN = 8 Byte **OUT** = 2 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Status	0	-	-	-	-	-	-	-	Diag Warn		
	1	-	FCE	-	-	CFG	COM	U _B	-		
Ein- gänge	2	DI7 C3P2	DI6 C3P4	DI5 C0P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4		
	3	DI15 C7P2	DI14 C7P4	DI13 C6P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C4P4		
Diag-	4	-	-	-	-	-	-	-	I/O Diag		
nose	5	-	-	Sched Diag	-	-	-	-	-		
	6	SCS7	SCS6	SCS5	SCS4	SCS3	SCS2	SCS1	SCS0		
	7	-	-	-	-	-	-	-	-		
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Control	trol 0 Control-Word (MSB)										
	1		Control-Word (LSB)								

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Prozessdatenmapping FGEN-OM16-x001

Keine Diagnose,
 Status- und Control-Word können zusätzlich ausgeblendet werden, siehe Seite 3-24

IN = 2 Byte **OUT =** 4 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status	0	U _L	-	-	-	-	-	-	Diag Warn
	1	-	FCE	-	-	CFG	COM	U _B	-
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Control	0				Control-W	ord (MSB)			
	1				Control-V	Vord (LSB)			
Aus- gänge	2	DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
	3	DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Sammeldiagnose (Summarized Diagnostic) aktiviert, siehe Seite 7-36

IN = 4 Byte **OUT** = 4 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status	0	U _L	-	-	-	-	-	-	Diag Warn
	1	-	FCE	-	-	CFG	COM	U _B	-
Diag-	4	-	-	-	-	-	-	-	I/O Diag
nose	5	-	-	-	-	-	-	-	-
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Control	0				Control-W	ord (MSB)			
	1				Control-V	Vord (LSB)			
Aus- gänge	2	DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
	3	DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Herstellerspezifische Diagnose (Scheduled Diagnostic) aktiviert, siehe Seite 7-36

IN = 8 Byte **OUT** = 4 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status	0	U _L	-	-	-	-	-	-	Diag Warn
	1	-	FCE	-	-	CFG	COM	U _B	-
Diag-	2	-	-	-	-	-	-	-	I/O Diag
nose	3	-	-	Sched Diag	-	-	-	-	-
	4	=	-	-	-	-	-	-	-
	5	SCO7	SCO6	SCO5	SCO4	SCO3	SCO2	SCO1	SCO0
	6	SCO15	SCO14	SCO13	SCO12	SCO11	SCO10	SCO9	SCO8
	7	=	-	-	-	-	-	-	-
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Control	0				Control-W	ord (MSB)			
	1				Control-V	Vord (LSB)			
Aus- gänge	2	DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
	3	DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Prozessdatenmapping FGEN-IOM88-x001

Keine Diagnose,
 Status- und Control-Word können zusätzlich ausgeblendet werden, siehe Seite 3-24

IN = 4 Byte **OUT** = 4 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status	0	U _L	-	-	-	-	-	-	Diag Warn
	1	-	FCE	-	-	CFG	COM	U _B	-
Ein- gänge	2	DI7 C3P2	DI6 C3P4	DI5 C2P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4
	3	-	-	-	-	-	-	-	-
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Control	0				Control-W	ord (MSB)			
	1				Control-V	Vord (LSB)			
Aus- gänge	2	DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
	3	-	-	-	-	-	-	-	-

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Sammeldiagnose (Summarized Diagnostic) aktiviert, siehe Seite 7-36

IN = 6 Byte **OUT** = 4 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Status	0	U _L	-	-	-	-	-	-	Diag Warn	
	1	-	FCE	-	-	CFG	СОМ	U _B	-	
Ein- gänge	2	DI7 C3P2	DI6 C3P4	DI5 C2P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4	
	3	-	-	-	-	-	-	-	-	
Diag- nose	4	-	-	-	_	-	-	=	I/O Diag	
	5	-	-	-	-	-	-	-	-	
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Control	0	Control-Word (MSB)								
	1	Control-Word (LSB)								
Aus- gänge	2	DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4	
	3	-	-	-	-	-	-	-	-	

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Herstellerspezifische Diagnose (Scheduled Diagnostic) aktiviert, siehe Seite 7-36

IN = 8 Byte **OUT** = 4 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Status	0	U _L	-	-	-	-	-	-	Diag Warn	
	1	-	FCE	-	-	CFG	СОМ	U _B	-	
Ein- gänge	2	DI7 C3P2	DI6 C3P4	DI5 C2P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4	
Diag- nose	3	-	-	-	-	-	-	-	-	
	4	-	-	-	-	-	-	-	I/O Diag	
	5	-	-	Sched Diag	-	-	-	-	-	
	6	-	-	-	-	SCS3	SCS2	SCS1	SCS0	
	7	SCO7	SCO6	SCO5	SCO4	SCO3	SCO2	SCO1	SCO0	
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Control	0	Control-Word (MSB)								
	1	Control-Word (LSB)								
Aus- gänge	2	DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4	
	3	-	-	-	-	-	-	-	-	

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Prozessdatenmapping FGEN-XSG16-x001

Keine Diagnose,
 Status- und Control-Word können zusätzlich ausgeblendet werden, siehe Seite 3-24

IN = 4 Byte **OUT** = 4 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Status	0	U _L	-	-	-	-	-	-	Diag Warn	
	1	-	FCE	-	-	CFG	COM	U _B	-	
Ein- gänge	2	DI7 C3P2	DI6 C3P4	DI5 C2P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4	
	3	DI15 C7P2	DI14 C0P2	DI13 C0P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C3P4	
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Control	0	Control-Word (MSB)								
	1				Control-V	Vord (LSB)				
Aus- gänge	2	DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4	
	3	DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4	

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Sammeldiagnose (Summarized Diagnostic) aktiviert, siehe Seite 7-36

IN = 6 Byte **OUT** = 4 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Status	0	U _L	-	-	-	-	-	-	Diag Warn		
	1	-	FCE	-	-	CFG	СОМ	U _B	-		
Ein- gänge	2	DI7 C3P2	DI6 C3P4	DI5 C2P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4		
	3	DI15 C7P2	DI14 C0P2	DI13 C0P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C3P4		
Diag-	4	-	-	-	-	-	-	-	I/O Diag		
nose	5	-	-	-	-	-	-	-	-		
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Control	0		Control-Word (MSB)								
	1				Control-V	Vord (LSB)					
Aus- gänge	2	DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4		
	3	DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4		

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Herstellerspezifische Diagnose (Scheduled Diagnostic) aktiviert, siehe Seite 7-36

IN = 10 Byte **OUT** = 4 Byte

IN	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status	0	U _L	-	-	-	-	-	-	Diag Warn
	1	-	FCE	-	-	CFG	COM	U _B	-
Ein- gänge	2	DI7 C3P2	DI6 C3P4	DI5 C2P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4
	3	DI15 C7P2	DI14 C0P2	DI13 C0P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C3P4
Diag-	4	-	-	-	-	-	-	-	I/O Diag
nose	5	-	-	Sched Diag	-	-	-	-	-
	6	SCS7	SCS6	SCS5	SCS4	SCS3	SCS2	SCS1	SCS0
	7	SCO7	SCO6	SCO5	SCO4	SCO3	SCO2	SCO1	SCO0
	8	SCO15	SCO14	SCO13	SCO12	SCO11	SCO10	SCO9	SCO8
	9	-	-	-	-	-	-	-	-
OUT	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Control	0				Control-W	ord (MSB)			
	1				Control-V	Vord (LSB)			
Aus- gänge	2	DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
	3	DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4

[→] Bedeutung der Prozessdatenbits (Seite 7-20)

Bedeutung der Prozessdatenbits

Tabelle 7-9: Bedeutung der Prozessdatenbits

Name	Bedeutung
I/O Doton	
I/O-Daten	
Dlx	DI = Digitaleingang
DOx	DO = Digitalausgang
Cx	C = Buchse
Px	P = Pin
Diagnose	
DiagWarn	Siehe VSC 100, Attr. 109 (6Dh), Status register 2 (Seite 7-30)
U _L	
U _B	
COM	
CFG	
FCE	
I/O Diag	Sammeldiagnose der I/O-Kanäle
SchedDiag	Das Mappen der Kanaldiagnosen in die Prozessdaten ist aktiviert.
SCSx	Kurzschluss an der Sensorversorgung des jeweiligen Kanals
SCOx	Kurzschluss am Ausgang des jeweiligen Kanals

7.3.4 Connection Manager Object (0×06)

Dieses Objekt dient zum Handling verbindungsorientierter und verbindungsloser Kommunikation und darüber hinaus zum Verbindungsaufbau zwischen Subnetzen.

Die folgende Beschreibung ist der CIP-Spezifikation, Vol 1 Rev. 2.1 der ODVA & ControlNet International Ltd. entnommen und wurde auf die FGEN-Produkte angepasst.

Allgemeine Dienste (Common Services)

Tabelle 7-10:	Service-Code	Klasse	Instanz-	Service-Name
Common Ser- vices	84 (0×54)	Nein	Ja	FWD_OPEN_CMD (Öffnet eine Verbindung)
	78 (0×4E)	Nein	Ja	FWD_CLOSE_CMD (Schließt eine Verbindung)
	82 (0×52)	Nein	Ja	UNCONNECTED_SEND_CMD

7.3.5 TCP/IP Interface Object (0×F5)

Die folgende Beschreibung ist der CIP-Spezifikation, Vol 1 Rev. 1.1 der ODVA & ControlNet International Ltd. entnommen und wurde auf die FGEN-Produkte angepasst.

Klassen-Attribute

Tabelle 7-11: Klassen-	Attr. Nr.	Attributname	Get/ Set	Тур	Wert
Attribute	1 (0×01)	REVISION	G	UINT	1
	2 (0×02)	MAX OBJECT INSTANCE	G	UINT	1
	3 (0×03)	NUMBER OF INSTANCES	G	UINT	1
	6 (0×06)	MAX CLASS IDENTIFIER	G	UINT	7
	7 (0×07)	MAX INSTANCE ATTRIBUTE	G	UINT	6

Instanz-Attribute

Tabelle 7-12: Instanz- Attribute	Attr. Nr.	Attributname	Get/ Set	Тур	Beschreibung
	1 (0×01)	STATUS	G	DWORD	Status der Schnittstelle (siehe Seite 7-23, Ta- belle 7-14: Interface Status)
	2 (0×02)	CONFIGURATION CAPABILITY	G	DWORD	Interface Capability Flag (siehe Seite 7-23, Tabelle 7-15: Configuration Capability)
	3 (0×03)	CONFIGURATION CONTROL	G/S	DWORD	Interface Control Flag (siehe Seite 7-24, Tabelle 7-16: Configuration Control)
	4 (0×04)	PHYSICAL LINK OBJECT	G	STRUCT	
		Path size		UINT	Anzahl der 16-Bit-Wörter: 0×02
		Pfad:		Padded EPATH	0×20, 0×F6, 0×24, 0×01
	5 (0×05)	INTERFACE CON- FIGURATION	G	Structure of:	TCP/IP Network Interface Configuration (siehe Seite 7-24)
		IP-Adresse	G	UDINT	Aktuelle IP-Adresse
		NETWORK MASK	G	UDINT	Aktuelle Netzwerkmaske
		GATEWAY ADDR.	G	UDINT	Aktuelles Default-Gateway
		NAME SERVER	G	UDINT	0 = keine Serveradresse konfiguriert
		NAME SERVER 2		UDINT	0 = keine Serveradresse für Server 2 konfiguriert
		DOMAIN NAME	G	UDINT	0 = kein Domain-Name konfiguriert
	6 (0×06)	HOST NAME	G	STRING	0 = kein Host-Name konfiguriert (siehe Seite 7-24)
	12 (0×0C)	Quick Connect	G/S	BOOL	0 = deaktiveren 1 = aktivieren

Allgemeine Dienste (Common Services)

Tabelle 7-13:	Service-Code	Klasse	Instanz-	Service-Name
Common Ser- vices	01 (0×01)	Ja	Ja	Get_Attribute_All
	02 (0×02)	Nein	Nein	Set_Attribute_All
	14 (0×0E)	Ja	Ja	Get_Attribute_Single
	16 (0×10)	Nein	Ja	Set_Attribute_Single

Interface Status

Dieses Status-Attribut zeigt den Status der TCP/IP-Netzwerkschnittstelle an. Näheres zu den Zuständen dieses Status-Attributs finden Sie unter Figure 7-2:TCP/IP Objektstatus-Diagramm (gemäß CIP Spez., Vol.2, Rev. 1.1).

Tabelle 7-14:	Bit(s)	Name	Definition
Interface Status	0-3	Interface Configuration Status	Zeigt den Status des Interface Configuration-Attributs: 0 = Das Interface Configuration-Attribut wurde noch nicht konfiguriert 1 = Das Interface Configuration-Attribut enthält eine gültige Konfiguration 2 bis 15 = reserviert
	4 bis 31	reserviert	

Configuration Capability

Das Configuration Capability-Attribut gibt an, in wieweit das Gerät optionale Netzwerk-Konfigurations-Mechanismen unterstützt.

Tabelle 7-15:	Bit(s)	Name	Definition	Wert
Configuration Capability	0	BOOTP Client	Diese Gerät unterstützt die Netzwerk- konfiguration über BOOTP.	1
	1	DNS Client	Dieses Gerät unterstützt die Aufschlüsselung von Host-Namen mittels DNS-Server-Anfragen.	0
	2	DHCP Client	Diese Gerät unterstützt die Netzwerk- konfiguration über DHCP.	1

Configuration Control

Das Configuration Control-Attribut wird zur Steuerung der Netzwerk-Konfiguration verwendet.

Tabelle 7-16:	Bit(s)	Name	Definition
Configuration Control	0-3	Startup- Konfiguration	Bestimmt auf welche Art und Weise das Gerät beim Anlaufen seine Anfangskonfiguration erhält. 0 = Das Gerät soll die zuvor gespeicherte Schnittstellenkonfiguration nutzen (zum Beispiel aus dem nicht-flüchtigen Speicher, per Hardware-Schalter eingestellt, etc.). 1 bis 3 = reserviert
	4	DNS Enable	Immer 0.
	5-31	reserviert	Auf 0 setzen

Interface Configuration

Dieses Attribut enthält die Konfigurationsparameter, die notwendig sind um ein TCP/IP-Gerät zu betreiben.

Um dieses Attribut zu verändern, lesen Sie es zunächst aus, ändern Sie dann die Parameter und setzten Sie dann das Attribut.

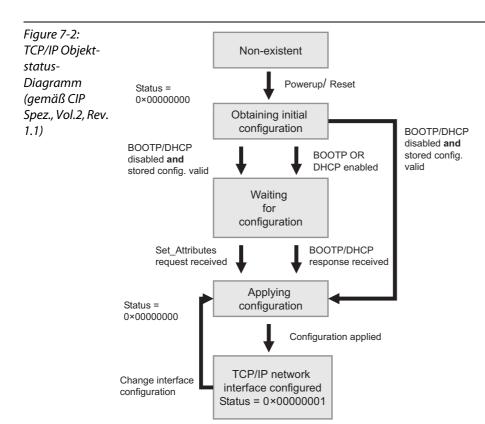
Das TCP/IP Interface Objekt setzt die neue Konfiguration nach Beendigung des Schreib-Vorgangs. Ist der Wert der Bits der Startup Configuration 0 (Configuration Control-Attribut), wird die neue Konfiguration im nicht-flüchtigen Speicher abgelegt.

Das Gerät antwortet nicht auf das Set-Kommando bevor die Werte sicher im nicht-flüchtigen Speicher abgelegt sind.

Der Versuch, eine der Komponenten des Interface Configuration-Attributs mit ungültigen Werten zu beschreiben führt zu einem Fehler (Status-Code 0×09), der dann vom Set-Dienst zurückgemeldet wird.

Wird die Anfangs-Konfiguration über BOOTP oder DHCP vorgegeben, sind die Komponenten des Attributs alle 0 bis eine Antwort über BOOTP oder DHCP kommt.

Nach der Antwort des BOOTP- oder DHCP-Server zeigt das Attribut dann die übermittelten Werte.


Host Name

Das Attribut enthält den Namen des Geräte-Hosts.

Es wird verwendet wenn das Gerät die DHCP-DNS Update-Funktionalität unterstützt und so konfiguriert wurde, dass es die Start-Konfiguration vom DHCP-Server erhält.

Dieser Mechanismus erlaubt es dem DHCP-Client, seinen Host-Namen an die DHCP-Server weiterzuleiten. Der DHCP-Server aktualisiert dann die DNS-Daten für den Client.

7.3.6 Ethernet Link Object (0×F6)

Die folgende Beschreibung ist der CIP-Spezifikation, Vol 1 Rev. 1.1 der ODVA & ControlNet International Ltd. entnommen und wurde auf die FGEN-Produkte angepasst.

Klassen-Attribute

Tabelle 7-17: Klassen-	Attr. Nr.	Attributname	Get/ Set	Тур	Wert
Attribute	1 (0×01)	REVISION	G	UINT	1
	2 (0×02)	MAX OBJECT INSTANCE	G	UINT	1
	3 (0×03)	NUMBER OF INSTANCES	G	UINT	1
	6 (0×06)	MAX CLASS IDENTIFIER	G	UINT	7
	7 (0×07)	MAX INSTANCE ATTRIBUTE	G	UINT	6

Instanz-Attribute

Tabelle 7-18: Instanz- Attribute	Attr. Nr.	Attributname	Get/ Set	Тур	Beschreibung
	1 (0×01)	INTERFACE SPEED	G	UDINT	Geschwindigkeit in Megabit pro Sekunde (z. B. 10, 100, 1000, etc.)
	2 (0×02)	INTERFACE FLAGS	G	DWORD	siehe Tabelle 7-19: Interface flags
	3 (0×03)	PHYSICAL ADDRESS	G	ARRAY OF USINT	Enthält die MAC-ID der Schnittstelle (TURCK: 00:07:46:xx:xx)
	6 (0×06)	INTERFACE CONTROL		2 WORD	Erlaubt Port-weise Änderung der Ethernet- Einstellungen
	7 (0×07)	INTERFACE TYPE			
	10 (0×0A)	INTERFACE LABEL			

Tabelle 7-19: Interface flags	Bits	Name	Definition	Default-Wert
	0	Link Status	Zeigt an, ob die Ethernet 802,3 Kommuni- kations-Schnittstelle mit einem aktiven Netzwerk verbunden ist, oder nicht. 0 = inaktiver Link 1 = aktiver Link	Abhängig von der Applikation
	1	Half / Full Duplex	0 = Halbduplex; 1 = Vollduplex; Ist das Link Status-Bit 0, kann die Duplex- Bit nicht erkannt werden.	Abhängig von der Applikation

Tabelle 7-19: Interface flags	Bits	Name	Definition	Default-Wert
	2 bis 4	Negotiation Status	Zeigt den Status der automatischen Duplex-Erkennung (Autonegotiation) 0 = Autonegotiation läuft 1 = Autonegotiation und Geschwindigkeitserkennung fehlgeschlagen Verwendung von Default-Werten für Geschwindigkeit und Duplex ((10Mbps/Halbduplex). 2 = Autonegotiation fehlgeschlagen, aber Geschwindigkeit ermittelt (Default: Halbduplex). 3 = Ermittlung von Geschwindigkeit und Duplex-Modus erfolgreich. 4 = Autonegotiation nicht gestartet. Geschwindigkeit und Duplex-Modus werden vorgegeben.	Abhängig von der Applikation
	5	Manual Setting Requires Reset	0 = Schnittstelle kann Änderungen der Link-Parameter automatisch aktivieren (Autonegotiation, Duplex-Modus, Schnitt- stellen-Geschwindigkeit) 1 = Das Gerät erfordert einen Reset des Identity Objekts, um die Änderungen zu übernehmen.	0
	6	Local Hardware Fault	0 = Schnittstelle erkennt keinen lokalen Hardware-Fehler 1 = lokalen Hardware-Fehler erkannt	0

Allgemeine Dienste (Common Services)

Tabelle 7-20:	Service-Code	Klasse	Instanz-	Service-Name
Common Services	01 (0×01)	Ja	Ja	Get_Attribute_All
	14 (0×0E)	Ja	Ja	Get_Attribute_Single
	76 (0×4C)	Nein	Ja	Enetlink_Get_and_Clear

7.4 VSC-Vendor Specific Classes

Zusätzlich zu den oben genannten CIP Standardklassen unterstützen die FGEN-Stationen die im Folgenden beschriebenen herstellerspezifischen Klassen (VSCs).

Tabelle 7-21: VSC-Vendor Specific Classes	dez. (hex.)	Name	Beschreibung
	100 (64h)	Gateway Class, Seite 7-29	Enthält Daten und Einstellungen für den feldbusspezifischen Teil der FGEN-Stationen.
	102 (66h)	Process Data Class, Seite 7-31	Enthält die Prozessdaten
	117 (75h)	Digital Versatile Module Class, Seite 7-34	Beschreibt die I/O-Kanäle
	126 (1Ah)	Miscellaneous Parameters Class, Seite 7-35	Beschreibt die Eigenschaften der EtherNet/IP™-Ports.

7.4.1 Class Instance der VSCs

Hinweis

Die Class Instance Attribute sind für alle VSC identisch.

Die klassenspezifischen Objektinstanzen und die dazugehörigen Attribute werden in den Abschnitten der verschiedenen VSC beschrieben.

Die allgemeinen VSC-Class Instance Attribute sind wie folgt definiert.

Tabelle 7-22: Class instance	Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung
	100 (64h)	Class revision	G	UINT	Enthält die Revisions-Nr. der Klasse. (Maj. Rel. *1000 + Min. Rel.).
	101 (65h)	Max. instance	G	USINT	Enthält die Nummer des der höchsten Instanz eine Objektes, dass auf diesem Level der Klassen-Hierarchie kreiert wurde.
	102 (66h)	# of instances	G	USINT	Enthält die Anzahl der Objekt-Instanzen, die in dieser Klasse erstellt wurden.
	103 (67h)	Max. class attri- bute	G	USINT	Enthält die Nummer des letzten Klassen-Attributs, das implementiert wird.

7.4.2 Gateway Class (VSC 100)

Diese Klasse beinhaltet alle Informationen, die die gesamte Station betreffen, nicht die verschiedenen I/O-Kanäle.

Class instance

Hinweis

Die Beschreibung der Class Instance der VSC finden sie in Abschnitt Class Instance der VSCs (Seite 7-28).

Object Instance 1

Tabelle 7-23:
Object instance
1, Boot instance

Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung
100 (64h)	Max object attri- bute	G	USINT	Enthält die Nummer des letzten Objekt-Attributs, das implementiert wird.
101 (65h)	Hardware revision	G	STRUCT	Enthält den Hardware-Stand der Station (USINT Maj./USINT Min.).
102 (66h)	Firmware revision	G	STRUCT	Enthält den Firmware-Stand der Boot-Firmware (Maj./Min.).
103 (67h)	Service tool ident number	G	UDINT	Enthält die BOOT-ID, die der Software I/O-AS- SISTANT als Identifikationsnummer dient.
104 (68h)	Hardware Info	G	STRUCT	Enthält Stations-Hardware-Informationen (UINT): - Anzahl (Anzahl der folgenden Einträge) - CLOCK FREQUENCY (kHz) - MAIN FLASH (in kB) - MAIN FLASH SPEED (ns) - SECOND FLASH (kB) - RAM (kB), - RAM SPEED (ns), - RAM data WIDTH (bit), - SERIAL EEPRPOM (kbit) - RTC SUPPORT (in #) - AUTO SERVICE BSL SUPPORT (BOOL) - HDW SYSTEM

Object Instance 2

Tabelle 7-24: Object Instance 2, Gateway Instance	Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung
instance	109 (6Dh)	Status register 2	G	STRUCT	Das Statuswort enthält allgemeine Informationen zum Stations-Status. Station Bit 15: reserviert Bit 14: "Force Mode Active Error" Der Force Mode ist aktiviert. Bit 13: reserviert Bit 12: reserviert Interner Bus Bit 11: "I/O Cfg Modified Error" Die Konfiguration wurde inkompatibel verändert. Bit 10: "I/O Communication Lost Error" Kommunikation auf dem internen Bus gestört. Spannungsfehler Bit 09: "U _{sys} too low" Systemspannung zu niedrig (< 18 V DC). Bit 08: reserviert Bit 07: "U _L too low" Lastspannung zu niedrig (< 18 V DC). Bit 06: reserviert Bit 05: reserviert Bit 05: reserviert Bit 07: reserviert
	115 (73h)	ON IO CONNECTION TIMEOUT	G/S	ENUM USINT	Reaktion bei der Überschreitung des Zeitlimits für eine I/O-Verbindung: SWITCH IO FAULTED (0): Die Kanäle werden auf den Ersatzwert geschaltet. SWITCH IO OFF (1): Die Ausgänge werden auf 0 gesetzt. SWITCH IO HOLD (2): Keine weiteren Änderungen an I/O-Daten. Die Ausgänge werden gehalten.
	138 (0×8A)	GW Status Register	Get/ Set	DWORD	Aktiviert oder deaktiviert das Einblenden des Status-Registers in die Eingangsdaten der Station.
	139 (0×8B)	GW Control Register	Get/ Set	DWORD	Aktiviert oder deaktiviert das Einblenden des Control-Registers in die Ausgangsdaten der Station.

Tabelle 7-24: Object Instance 2, Gateway Instance	Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung
	140 (0×8C)	Disable Protocols	Get/ Set	UINT	Deaktivierung des verwendeten Ethernet-Protokolls. Bitzuordnung der Protokolle 0 = EtherNet/IP™ (kann über die EtherNet/IP™- Schnittstelle nicht deaktiviert werden 1 = Modbus/TCP 2 = PROFINET 3 - 14 = reserviert 15 = Web-Server

7.4.3 Process Data Class (VSC102)

Diese Klasse enthält prozessdatenrelevante Informationen.

Class instance

Hinweis

Die Beschreibung der Class Instance der VSC finden sie in Abschnitt Class Instance der VSCs, Seite 7-28.

Object Instance 1, Standard Eingangsprozessdaten (komprimiert)

Tabelle 7-25: Object Instance 1, Standard Eingangspro- zessdaten (komprimiert)	Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung
	100 (64h)	Max object attri- bute	G	USINT	Enthält die Nummer des letzten Objekt-Attributs, das implementiert wird.
	101 (65h)	Attribute list	G	ARRAY OF USINT	Liste aller Attribute, die von dieser Instanz unterstützt werden.
	102 (66h)	Packed process input data	G	ARRAY OF WORD	Prozesseing angsdaten, 16-Bit linksbündig, komprimiert.
	103 (67h)	Process data byte count	G	USINT	Anzahl der Bytes, die mit dieser Instanz ausgetauscht werden

Object Instance 2, Standard Prozessausgangsdaten (komprimiert)

Tabelle 7-26: Object Instance 2, Standard Pro- zessausgangs- daten (komprimiert)	Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung
	100 (64h)	Max object attri- bute	G	USINT	Enthält die Nummer des letzten Objekt-Attributs, das implementiert wird.
	101 (65h)	Attribute list	G	ARRAY OF USINT	Liste aller Attribute, die von dieser Intanz unterstützt werden.
	102 (66h)	Packed process input data	G/S	ARRAY OF WORD	Prozessausgangsdaten, 16-Bit linksbündig, komprimiert.
	103 (67h)	Process data byte count	G	USINT	Anzahl der Bytes, die mit dieser Instanz ausgetauscht werden

Object Instance 3, Diagnoseinstanz

Tabelle 7-27: Object Instance 3, Diagnoseins- tanz	Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung
	104 (68h)	GW Sammeldiagnose (Summarized Dia- gnostics)	G/S	BOOL	0 = inaktiv 1 = aktiv: 1 Bit Diagnosedaten wird ans Ende des Eingangsabbildes gemappt (Seite 7-36). Änderung werden nach einem Span- nungs-Reset übernommen!
	105 (69h)	GW Herstellerspezifi- sche Diagnose (Scheduled Diag- nostic)	G/S	BOOL	0 = inaktiv 1 = aktiviert das Mappen der kanalspezifi- schen Diagnosebits in die Prozessein- gangsdatenSeite 7-36. Änderung werden nach einem Span- nungs-Reset übernommen!
	106 (6Ah)	reserviert			-

Object Instance 4, COS/CYCLIC Instanz

Tabelle 7-28: Object Instance 4, COS/CYCLIC Instanz	Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung
	104 (68h)	COS data map- ping	G/S	ENUM USINT	Die aktuelle Daten werden in den nicht- flüchtigen Speicher der Station geladen. Änderung werden nach einem Span- nungs-Reset übernommen! 0 = Standard: Daten der COS-Message → Eingangsdaten. 1 = Prozesseingangsdaten (nur das Prozes- seingangsabbild wird zum Scanner über- tragen) 2 bis 7 = reserviert

7.4.4 Digital Versatile Module Class (VSC117)

Diese Klasse enthält alle Informationen und Parameter zu den I/O-Kanälen der Station.

Objekt-Instanz

Tabelle 7-29:
Objekt-Instanz

Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung			
100 (64h)	Max object attribute	G	USINT	Enthält die Nummer des letzten Objekt-Attributs, das implementiert wird.			
101 (65h)	reserviert			-			
102 (66h)	reserviert			-			
103 (67h)	Module ID	G	DWORD	Enthält die Stations-ID.			
104 (68h)	Module order number	G	UDINT	Enthält die Identnummer der Station.			
105 (69h)	Module order name	G	SHORT STRING	Enthält den Stationsnamen			
106 (6Ah)	Module revision	G	USINT	Enthält die Revisions-Nummer der Station.			
107 (6Bh)	Module type ID	G	ENUM USINT	Beschreibt den Stationstyp: 0×01: digitale Station			
108 (6Ch)	Module command interface	G/S	ARRAY	Die Steuerschnittstelle der Station. ARRAY OF: BYTE: Steuerbyte-Sequenz			
109 (6Dh)	Module response interface	G	ARRAY	Die Rückmeldeschnittstelle der Station. ARRAY OF: BYTE: Rückmeldebyte-Sequenz			
110 (6Eh)	Module registered index	G	ENUM USINT	Enthält die Indexnummern aus allen Stationslisten.			
111 (6Fh)	Module input channel count	G	USINT	Enthält die Anzahl der Eingangskanäle der Station.			
112 (70h)	Module output channel count	G	USINT	Enthält die Anzahl der Ausgangskanäle der Station.			
Eingangsd	aten						
113 (71h)	Module input_1	G	DWORD	Eingangsdaten der referenzierten I/Os			
Ausgangs	Ausgangsdaten						
115 (73h)	Module output_1	G	DWORD	Ausgangsdaten der referenzierten I/Os			

Tabelle 7-29: Objekt-Instanz	Attr. Nr.	Attribute-Name	G et/	Тур	Beschreibung			
	dez. (hex.)		S et					
	Diagnosedaten							
	119 (77h)	Short circuit output error_1	G	DWORD	Kurzschluss an Ausgangskanal			
	121 (79h)	Short circuit sensor error_1	G	DWORD	Sensor-Kurzschluss an Kanal			
	Parameterdaten							
	127 (7Fh)	Invert input data_1	G/S	DWORD	Das Eingangssignal wird invertiert (Kanal 1 bis 16).			
	133 (85h)	Auto recovery output_1	G/S	DWORD	Der Ausgang schaltet sich nach einer Überlast selbsttätig wieder ein.			
	137 (89h)	Retriggered recovery output_1	G/S	DWORD	Der Ausgänge müssen nach einer Überlast gesteuert wieder eingeschaltet werden.			
	139 (8Bh)	Enable high side output driver_1	G/S	DWORD	Aktiviert den Ausgang an Kanal (Kanal 1 bis 16).			

7.4.5 Miscellaneous Parameters Class (VSC 126)

Instanz 1/ Instanz 2

Tabelle 7-30: Objekt-Instanz	Attr. Nr. dez. (hex.)	Attribute-Name	Get/ Set	Тур	Beschreibung
	109 (6Dh)	Ethernet Port Parameters	G/S	DWORD	0 = Autonegotiate, AutoMDIX A 1 = 10BaseT, Halbduplex, lineare Topologie (AutoMDIX deaktiviert) 2 = 10BaseT, Vollduplex, lineare Topologie (AutoMDIX deaktiviert) 3 = 100BaseT, Halbduplex, lineare Topologie (AutoMDIX deaktiviert) 4 = 100BaseT, Vollduplex, lineare Topologie (AutoMDIX deaktiviert)
	112 (70h)	IO controller soft- ware revision	G	DWORD	Die Anzahl der Instanzen zu diesem Para- meter ist abhängig von der Anzahl der I/O- Controller.

7.5 Diagnosemeldungen über die Prozessdaten

Neben der Auswertung von Diagnosen über Explicit Messages unterstützt FGEN mit EtherNet/IP™ das Mappen der Diagnosedaten in die Prozessdaten (siehe auch Prozessdatenmapping der Stationen (Seite 7-11 ff.).

Es gibt 2 unterschiedliche Arten des Diagnosedatenhandlings:

- Sammeldiagnose (Summarized Diagnostics)
- Herstellerspezifische Diagnose (Scheduled Diagnostics)

7.5.1 Sammeldiagnose (Summarized Diagnostics)

Bei aktivierter Sammeldiagnose zeigt 1 Bit an, dass mindestens ein Kanal der Station eine Diagnose sendet.

Dieses Bit ist "0", wenn keine Diagnosen am Gerät anliegen. Liegen Diagnosemeldungen vor, wird dieses Bit auf "1" gesetzt.

Bit "I/O Diag"

0 = OK, es liegt keine Diagnose vor

1 = mindestens 1 Kanal sendet eine Diagnose

7.5.2 Herstellerspezifische Diagnose (Scheduled Diagnostics)

Bei aktivierter herstellerspezifischer Diagnose (Process Data Class (VSC102) (Seite 7-31)) werden die herstellerspezifischen Diagnosebits in die Prozessdaten der Station gemappt (Seite 7-11 ff.)

Bit "SchedDiag"

0 = kein Mappen der I/O-Kanal-Diagnosen in die Prozessdaten

1 = Mappen der I/O-Kanal-Diagnosen in Prozesseingangsdaten aktiv

8 Applikationsbeispiel: FGEN für EtherNet/IP™ mit Allen Bradley PLC und RS Logix 5000

Allgemeine Hinweise	8-2
Verwendete Hard-/Software	8-2
– Hardware	8-2
– Software	8-2
Netzwerkkonfiguration	8-3
Konfiguration des Netzwerkes in "RS Logix 5000"	8-3
- Konfiguration des Controllers	8-3
 Konfiguration der FGEN-Stationen 	8-5
Download der I/O-Konfiguration	8-9
I/O-Daten-Mapping	8-11
Prozessdatenzugriff	8-12
Setzen von Ausgängen	8-12
Beispiel-Programm	8-12
Aktivieren von QuickConnect	8-14
	Allgemeine Hinweise Verwendete Hard-/Software Hardware Software Netzwerkkonfiguration Konfiguration des Netzwerkes in "RS Logix 5000" Konfiguration des Controllers Konfiguration der FGEN-Stationen Download der I/O-Konfiguration I/O-Daten-Mapping Prozessdatenzugriff Setzen von Ausgängen Beispiel-Programm Aktivieren von QuickConnect

8.1 Allgemeine Hinweise

Das folgende Beispiel enthält detaillierte Informationen zur Kopplung der FGEN-Stationen an eine Allen Bradley SPS.

8.1.1 Verwendete Hard-/Software

Hardware

Im Beispiel verwendete Hardware:

- Allen Bradley PLC 1756-L55/ A 1756-M12/A LOGIX5555
- Ethernet Bridge 1756-ENBT/A
- FGEN-IOM88-5001 (IP-Adresse 192.168.1.90)
- FGEN-XSG16-5001 (IP-Adresse 192.168.1.107)

Software

Im Beispiel verwendete Software:

RS Logix 5000 - zur Konfiguration des Controllers und anderer Netzwerkteilnehmer.

8.2 Netzwerkkonfiguration

Die FGEN-Stationen werden im Adressier-Modus "PGM-DHCP", Schalterstellung "600", ausgeliefert und können dann unter der IP-Adresse **192.168.1.254** angesprochen werden.

Hinweis

Um eine Kommunikation zwischen den FGEN-Stationen und einer SPS/einem PC oder einer Netzwerkkarte herzustellen, müssen beide Geräte Teilnehmer eines Netzwerkes sein.

Dazu müssen Sie entweder

die IP-Adresse des FGEN über BootP, DHCP etc. anpassen, um das Gerät in Ihr eigenes Netzwerk zu integrieren (detaillierte Informationen zu den unterschiedlichen Möglichkeiten der Adressierung finden Sie unter Kapitel 3, Anschlussmöglichkeiten, Seite 3-7).

oder

die IP-Adresse des verwendeten PCs oder der Netzwerkkarte ändern (detaillierte Informationen finden Sie unter Änderung der IP-Adresse eines PCs/einer Netzwerkkarte, Seite 14-2).

8.2.1 Konfiguration des Netzwerkes in "RS Logix 5000"

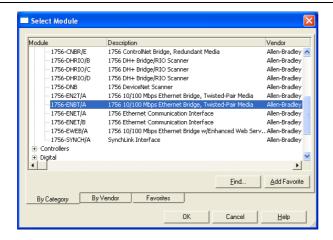
Der EtherNet/IP™-Teilnehmer (PLC, EtherNet/IP™-Schnittstelle und I/O-Stationen) werden mit Hilfe der Software "RS Logix 5000" (in diesem Beispiel Version 15) von Rockwell Automation konfiguriert.

Starten Sie RS Logix und öffnen Sie ein neues Projekt über das "Datei"-Menü.


Abbildung 8-1: Neues Projekt in RS Logix erstellen

Konfiguration des Controllers

Tragen Sie die Controller-relevanten Informationen in Abhängigkeit von Ihrer Konfiguration ein und vergeben Sie einen Projektnamen.


Abbildung 8-2: Konfiguration des Controllers

Das Projekt wird offline geöffnet. Zur Konfiguration des Netzwerkes öffnen Sie das Kontextmenü per Rechtsklick auf "I/O Configuration" und wählen Sie "New Module", um den ersten Netzwerkteilnehmer, die EtherNet/IP™-Bridge zum Netzwerk hinzuzufügen.

Öffnen Sie "Communications" und wählen Sie die Bridge aus. In diesem Beispiel ist das 1756-ENBT/A.

Abbildung 8-3: Auswahl der EtherNet/IP™-Bridge

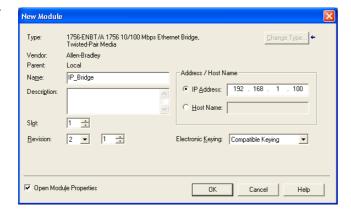

Geben Sie die "Major Revision" der EtherNet/IP™-Bridge an und bestätigen Sie mit "OK".

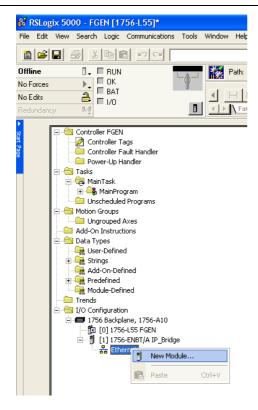
Abbildung 8-4: Major Revision der EtherNet/IP™-Bridge

Im folgenden Dialog "New Module" geben Sie einen Namen und die IP-Adresse der Bridge an (hier im Beispiel 192.168.1.100).

Abbildung 8-5: Konfiguration der EtherNet/IP™-Bridge

Im folgenden Dialog "Module Properties: Local..." clicken Sie "OK".

Die Konfiguration der Schnittstelle ist abgeschlossen.

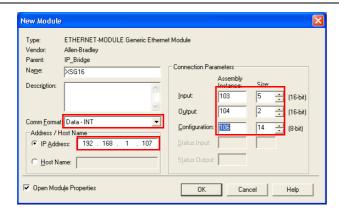

Clicken Sie "Finish" um den Dialog zu schließen.

Konfiguration der FGEN-Stationen


1 Öffnen Sie das Kontextmenü per Rechtsklick auf die Station der EtherNet/IP™-Bridge 1756-ENBT/A und wählen Sie "new Module".

Abbildung 8-6: Hinzufügen eines FGEN zur I/O-Konfiguration

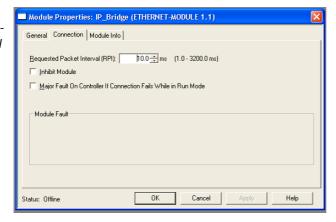
2 Öffnen Sie "Communications" und wählen Sie den Eintrag "Generic Ethernet Module", um die Station zu konfigurieren.


Abbildung 8-7: Generic Ethernet Module hinzufügen

3 Tragen Sie die notwendigen Geräteinformationen, wie "Module name" und "Communication format" ein und definieren Sie die IP-Adresse der Station sowie dessen Verbindungsparameter.

4 In den Assembly Instanzen 103 und 104 tragen Sie die Verbindungsparameter der Station ein:

Abbildung 8-8: Konfiguration des FGEN-XSG16-4001



Hinweis

Werden die Assembly Instanzen 103 und 104 verwendet (siehe Seite 5-13), müssen die Verbindungsparameter gemäß der tatsächlichen Modulkonfiguration gesetzt werden, das heißt, die Größe der Ein- und Ausgangsdaten muss exakt mit der tatsächlichen Datengröße der Station übereinstimmen. Die tatsächliche Größe der Ein- und Ausgangsdaten der Station kann aus der Assembly Class (0×04), Instanz 0×67, Attr. 0×04 und Assembly Class (0×04), Instanz 0×68, Attr. 0×04 ausgelesen werden.

5 Im Register "Connection" setzen Sie die "Requested Packet Interval" (RPI) auf 10 ms. Dies ist normalerweise die Defaulteinstellung. Für FGEN sind Zeiten von 5 ms oder höher einzustellen.

Abbildung 8-9: Verbindungsoptionen für FGEN einstellen

6 Konfiguration des FGEN-IOM-5001

Abbildung 8-10: Konfiguration des FGEN-XSG16-4001

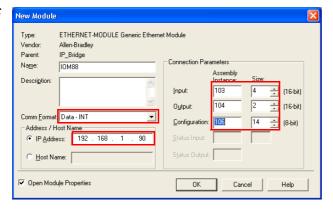
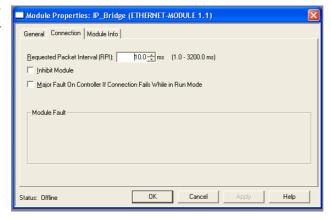
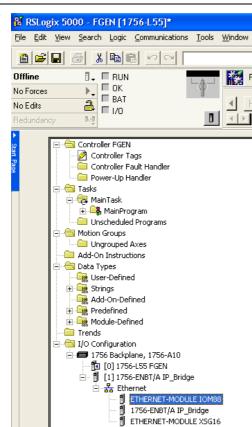
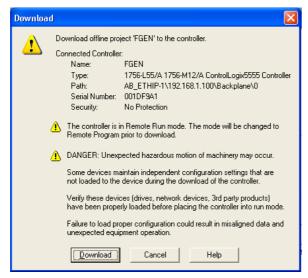




Abbildung 8-11: Verbindungsoptionen für FGEN einstellen

7 Beide Stationen werden nun zum Projektbaum hinzugefügt.

Abbildung 8-12: Projektbaum mit FGEN-Stationen



8.2.2 Download der I/O-Konfiguration

- **1** Die Konfiguration des Netzwerkes ist abgeschlossen, sie wird nun in den Controller geladen, z. B. über den Befehl "Communication → Download".
- 2 Im Dialog "Download" starten Sie das Herunterladen mit Hilfe der Schaltfläche "Download".

Abbildung 8-13: Download der Konfiguration

3 Wird eine Fehlermeldung generiert, die davor warnt, dass der Kommunikationspfad nicht gefunden werden kann, öffnen Sie bitte das "Path"-Menü (siehe Abbildung 8-15:), wählen sie Ihren Controller und wählen Sie "Set Project Path" (siehe Abbildung 8-16:).

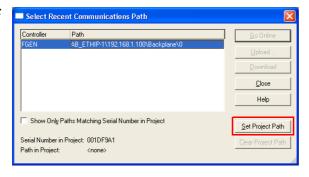
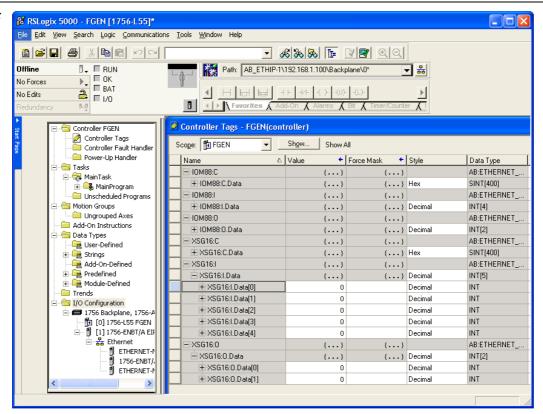

Abbildung 8-14: Fehlermeldung

Abbildung 8-15: Kommunikationspfad


Abbildung 8-16: Kommunikationspfad

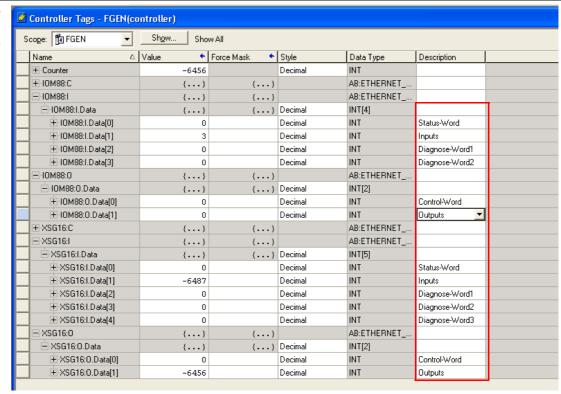
Ist der richtige Kommunikationspfad gesetzt, ist der Download der Konfiguration möglich.

Ist der Controller nach dem Download der I/O-Konfiguration im "Run"- oder "Remote Run"-Modus, wird das I/O-Daten-Mapping der FGEN-Stationen in den "Controller Tags" abgebildet.

Abbildung 8-17: Controller Tags

Die "Controller Tags" sind unterteilt in:

- xxx: C gemappte Konfigurationsdaten der Station
- xxx: I gemappte Eingangsdaten der Station
- xxx: O gemappte Ausgangsdaten der Station

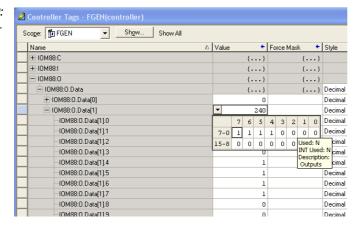

8.3 I/O-Daten-Mapping

Auf jede Station kann nur mit Hilfe der Controller Tags zugegriffen werden. Eingangsdaten können gelesen, und/ oder Ausgänge gesetzt werden.

Das Datenmapping ist abhängig von den konfigurierten FGEN-Modulen (siehe Kapitel 7.3.3, Assembly Object (0×04) , Prozessdatenmapping FGEN-IM16-x001 (Seite 7-11) ff.).

Bei den konfigurierten FGEN-Modulen sieht das Mapping wie folgt aus:

Abbildung 8-18: Mapping der FGEN-Stationen


8.4 Prozessdatenzugriff

8.4.1 Setzen von Ausgängen

Beispiel:

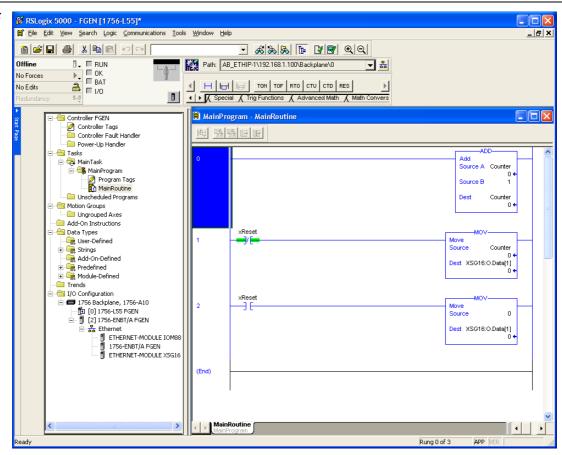
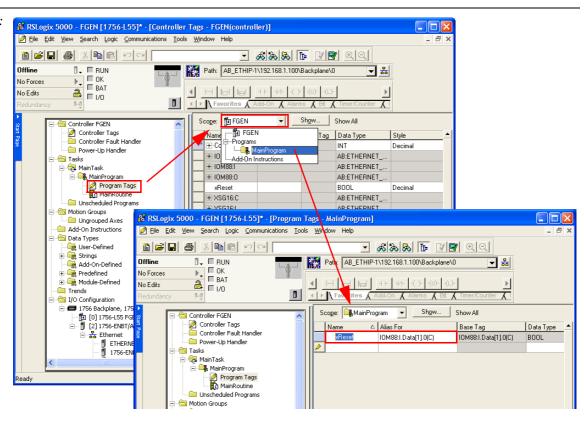

Um die Ausgänge "0" und "1" an der Station **FGEN-IOM88-5001** zu setzen, müssen im Datenwort 1 (IOM88:O.Data [1]) Bit 0 und Bit 1 gesetzt werden (siehe oben Abbildung 8-16: I/O-Daten-Mapping).

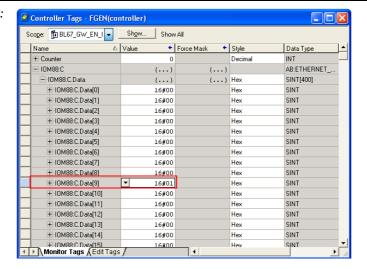
Abbildung 8-19: Setzen von Ausgängen an FGEN-IOM88-5001

8.4.2 Beispiel-Programm


Abbildung 8-20: Beispiel-Programm

- 1 Der Zähler zählt vorwärts.
- 2 Der Zählerwert wird auf die Ausgänge des FGEN-XSG16-4001, Wort XSG16:0.Data [1] gelegt.
- **3** Der Zähler wird über eine "1" an der Variable "xReset" (BOOL) auf "0" gesetzt "xReset" wurde im Hauptprogramm (Main Program) über ein Alias definiert und auf Bit IOM88:I.Data[1].0 gemappt.:

Abbildung 8-21: Definition und Mapping von xReset



8.5 Aktivieren von QuickConnect

Die QuickConnect-Funktion der FGEN-Stationen wird aktiviert über:

Configuration Assembly, Byte 9, Bit 1

Abbildung 8-22: Aktivieren der QuickConnect-Funktion

Hinweis

Weitere Erklärungen zum Thema QuickConnect finden Sie auch in Kapitel 7, QuickConnect in FGEN (Seite 7-4).

9 Implementierung von Modbus TCP

9.1	Allgemeine Modbus-Beschreibung	9-2
9.1.1	Protokoll-Beschreibung	9-3
9.1.2	Datenmodell	
9.2	Implementierte Modbus-Funktionen	9-6
9.3	Modbus Register	9-7
9.3.1	Datenbreiten der IO-Stationen im Modbus-Registerbereich	9-10
9.3.2	Registermapping der FGEN-Stationen	
	– FGEN-IM16-x001	9-11
	- FGEN-OM16-x001	9-12
	- FGEN-IOM88-x001	9-13
	- FGEN-XSG16-x001	9-14
	- Bedeutung der Registerbits	9-15
9.3.3	Register 100Ch: "Stations-Status"	9-16
9.3.4	Register 1130h: "Modbus-Connection-Mode"	
9.3.5	Register 1131h: "Modbus-Connection-Timeout"	9-17
9.3.6	Register 0×113C und 0×113D: "Restore Modbus-Verbindungs-Parameter"	9-17
9.3.7	Register 0×113E und 0×113F: "Save Modbus-Verbindungs-Parameter"	
9.4	Bit-Bereiche: Mapping der Input-Discrete- und Coil-Bereiche	9-19
9.5	Verhalten der Ausgänge im Fehlerfall (Watchdog)	9-20
9.6	Parameter und Diagnosemeldungen der I/O-Kanäle	9-21

9.1 Allgemeine Modbus-Beschreibung

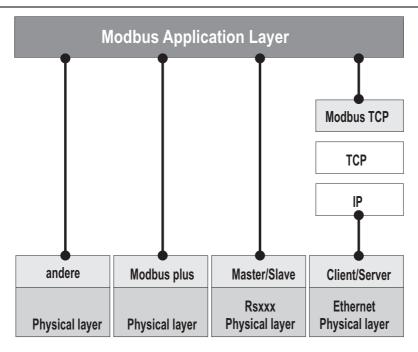
Hinweis

Die nachfolgende Beschreibung des Modbus-Protokolls ist der Modbus Application Protocol Specification V1.1 der Modbus-IDA entnommen.

Das Modbus-Protokoll ist ein Anwendungsprotokoll - angesiedelt auf der Schicht 7 des OSI-Referenzmodells - mit dessen Hilfe eine Client/Server-Kommunikation zwischen Knoten verschiedener Bussysteme und Netzwerke stattfinden kann.

Als industrieller De-Facto-Standard seit 1979, ermöglicht Modbus auch heute noch die Kommunikation zwischen Millionen von Automatisierungsgeräten. Heute wird der einfachen und eleganten Struktur von Modbus immer mehr Bedeutung zugemessen.

Der Zugriff auf Modbus erfolgt über den System Port 502 des TCP/IP-Stacks.

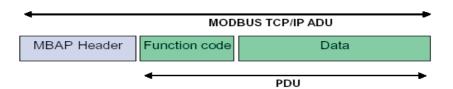

Modbus ist ein Anfrage/Antwort-Protokoll und bietet verschiedene Dienste, die durch Function Codes spezifiziert werden. Diese Function Codes sind ein Teil des Modbus Anfrage/Antwort-PDUs (Protocol Data Unit).

Folgende Unter-Protokolle sind derzeit implementiert:

- TCP/IP via Ethernet (wird in den FGEN-Modulen verwendet und hier beschrieben)
- Asynchrone serielle Datenübertragung über diverse Medien (drahtgebunden: RS232, RS422, RS485; optisch: LWL; Funk; etc.)
- Modbus PLUS, ein Highspeed-Token-Passing-Netzwerk.

Schematische Darstellung des Modbus Communication Stack (gemäß Modbus Application Protocol Specification V1.1 der Modbus-IDA):

Abbildung 9-1: Schematische Darstellung des Modbus Communication Stack



9.1.1 Protokoll-Beschreibung

Das Modbus-Protokoll definiert eine einfache Protokoll-Dateneinheit (PDU), die unabhängig ist von den darunterliegenden Kommunikationsschichten.

Beim Mappen des Modbus-Protokolls in verschiedene Bus-Systeme oder Netzwerke werden der jeweiligen Anwendungs-Dateneinheit (ADU - application data unit) zusätzliche Felder hinzugefügt.

Abbildung 9-2: Modbus-Telegramm gemäß Modbus-IDA

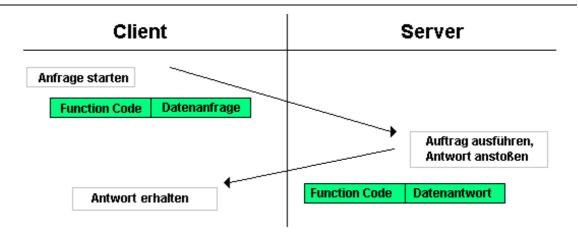
Die Modbus-ADU wird von dem Client, der die Modbus-Kommunikation initiiert aufgebaut.

Der Function Code zeigt dem Server an, welche Art von Datenzugriff erfolgen soll.

Das Modbus-Anwendungs-Protokoll legt dabei die Form der Anfrage des Clients fest.

Das Feld Function Code des Modbus-Telegramms wird in einem Byte kodiert. Gültig sind Codes von 1 bis 255 dezimal, wobei 128 bis 255 für Fehlermeldungen reserviert sind.

Wird eine Mitteilung von einem Client an einen Server geschickt, definiert der Function Code die Art und Weise des auszuführenden Befehls. Ein Function Code "0" ist nicht zulässig.


Um multiple Befehle auszuführen, werden manchen Function Codes Sub-Function Codes hinzugefügt.

Darüber hinaus enthält das Datenfeld der Mitteilungen, die von einem Client zu einem Server gesendet werden, Informationen, die der Server zur Verarbeitung des Befehls benötigt. Dabei handelt es sich beispielsweise um Bit- oder Register-Adressen, um die Angabe der Anzahl der abzuarbeitenden Befehle und die Anzahl der tatsächlichen Datenbytes in dem jeweiligen Datenfeld.

Bei bestimmten Anfragen kann das Datenfeld auch nicht-existent bzw. = 0 sein. In diesem Fall benötigt der Server keine zusätzlichen Informationen. Der Function Code allein definiert den auszuführenden Befehl.

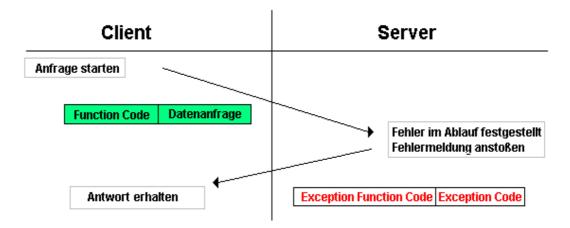

Wird die Anfrage des Clients fehlerfrei vom Server abgearbeitet, enthält das Antwort-Telegramm des Servers die angeforderten Daten.

Abbildung 9-3: Modbus-Datenübertragung (gemäß Modbus-IDA)

Im Falle eines Fehlers bei der Datenanforderung enthält das Datenfeld des Antwort-Telegramms einen Fehler Code (Exception Code), der vom Client je nach Applikation ausgewertet kann.

Abbildung 9-4: Modbus-Datenübertragung (gemäß Modbus-IDA)

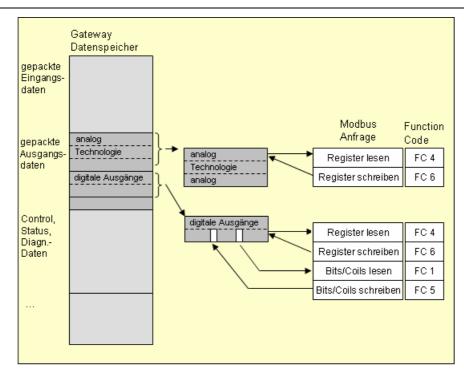
9.1.2 Datenmodell

Das Modbus-Datenmodell unterscheidet grundsätzlich 4 Grund-Datentypen:

Tabelle 9-1: Datentypen bei Modbus	Datentyp	Objekt-Typ	Zugriff	Kommentar
	Discrete Inputs	Bit	Read	Daten können durch ein I/O-System zur Verfügung gestellt werden.
	Coils	Bit	Read-Write	Daten können durch ein Applikations-Programm verändert/geschrieben werden.
	Input Registers	16-Bit, (Word)	Read	Daten können durch ein I/O-System zur Verfügung gestellt werden.
	Holding Registers	16-Bit, (Word)	Read-Write	Daten können durch ein Applikations-Programm verändert/geschrieben werden.

Von jedem dieser Grund-Datentypen können maximal 65536 Datenblöcke implementiert werden. Die Lese- und Schreib-Operationen für diese Daten ermöglichen auch das Bearbeiten multipler, aufeinanderfolgender Datenblöcke. Die maximal zulässige Länge der Daten ist dabei abhängig von dem Function Code, der für die Übertragung verwendet wird.

Selbstverständlich müssen alle über Modbus übertragenen Daten (Bits und Register) im Applikations-Speicher des Modbus-Gerätes abgelegt sein.


Der Zugriff auf diese Daten erfolgt über festgelegte Zugriffsadressen (siehe "Modbus Register", ab Seite 9-7).

Das untenstehende Beispiel zeigt die Datenanordnung bei einem Gerät mit digitalen und analogen Ein- und Ausgängen.

Die FGEN-Geräte verfügen nur über einen einzigen Datenblock, dessen Daten über verschiedene Modbus-Funktionen zugänglich sind. Dabei erfolgt der Zugriff entweder über Register (16-Bit-Zugriff) oder bei einigen über einen Single-Bit-Zugriff.

Abbildung 9-5: Abbild des Datenspeichers bei FGEN-Modulen

9.2 Implementierte Modbus-Funktionen

Die FGEN-Stationen mit Modbus TCP unterstützen die folgenden Funktionen zum Zugriff auf Prozessdaten, Parameter, Diagnosen und sonstige Dienste:

Tabelle 9-2: Implementierte Funktionen

Funktio	n Codes
Nr.	Funktion
	Beschreibung
1	Read Coils
	Lesen mehrerer Ausgangs-Bits.
2	Read Discrete Inputs
	Lesen mehrerer Eingangs-Bits.
3	Read Holding Registers
	Lesen von mehreren Ausgangs-Registern.
4	Read Input Registers
	Lesen von mehreren Eingangs-Registern
5	Write Single Coil
	Schreiben eines einzelnen Ausgangs-Bits
6	Write Single Register
	Schreiben eines einzelnen Ausgangs-Registers
15	Write Multiple Coils
	Schreiben mehrerer Ausgangs-Bits
16	Write Multiple Registers
	Schreiben von mehreren Ausgangs-Registern
23	Read/Write Multiple Registers
	Lesen und Schreiben von mehreren Registern

9.3 Modbus Register

Hinweis

Für das Register-Mapping für die unterschiedlichen Modbus-Adressierungen siehe nachfolgende Tabelle 9-5:, Seite 9-10.

Tabelle 9-3: Modbus- Register der Station	Adresse (hex.)	Zugriff A	Beschreibung
A ro = read only rw = read/write	0×0000 bis 0×01FF	ro	Gepackte Prozessdaten der Eingänge (Prozessdatenlänge der Stationen → siehe Tabelle 9-5: Datenbreiten der Stationen)
	0×0800 bis 0×09FF	rw	Gepackte Prozessdaten der Ausgänge (Prozessdatenlänge der Stationen → siehe Tabelle 9-5: Datenbreiten der Stationen)
	0×1000 bis 0×1006	ro	Stations-Kennung
	0×100C	ro	Stations-Status (siehe Tabelle 9-7: Register 100Ch: Stations-Status)
	0×1012	ro	Prozessabbildlänge in Bit für die digitalen Ausgabemodule
	0×1013	ro	Prozessabbildlänge in Bit für die digitalen Eingabemodule
	0×1017	ro	Register-Mapping-Revision (muss immer 1 sein, sonst ist das Register-Mapping nicht kompatibel zur vorliegenden Beschreibung)
	0×1020	ro	Watchdog, aktuelle Zeit [ms]
	0×1120	rw	Watchdog, vordefinierte Zeit [ms] (Default: 0) (siehe auch Verhalten der Ausgänge im Fehlerfall (Watchdog) (Seite 9-20))
	0×1130	rw	Modbus Connection Mode Register, Seite 9-17
	0×1131	rw	Modbus Connection Timeout in Sek. (Def.: 0 = nie), Seite 9-17
	0×113C bis 0×113D	rw	Modbus Parameter Restore, Seite 9-17 (Rücksetzen der Parameter auf die Defaulteinstellungen.)
	0×113E bis 0×113F rw		Modbus Parameter Save, Seite 9-18 (nichtflüchtiges Speichern der Parameter)
	0×1140	rw	Protokoll deaktivieren Deaktiviert explizit das ausgewählte Ethernet-Protokoll: 0 = EtherNet/IP™ 1 = Modbus/TCP 2 = PROFINET 15 = Web-Server

Implementierung von Modbus TCP

Tabelle 9-3: Modbus- Register der Station	Adresse (hex.)	Zugriff A	Beschreibung
	0×1141	ro	Aktives Protokoll 0 = EtherNet/IP™ 1 = Modbus/TCP 2 = PROFINET 15 = Web-Server
	0×2400	ro	Systemspannung U _{SYS} [mV]: 0 if < 18 V
	0×2401	ro	Lastspannung U _L [mV]: 0 if < 18 V
	0×8000 bis 0×8400	ro	Prozessdaten Eingänge (32 Register pro Station)
	0×9000 bis 0×9400	rw	Prozessdaten Ausgänge (32 Register pro Station)
	0×A000 bis 0×A400	ro	Diagnosen (32 Register pro Station)
	0×B000 bis 0×B400	rw	Parameter (32 Register pro Station)

Die folgende Tabelle zeigt das Register-Mapping für die unterschiedlichen Modbus-Adressierungen:

Tabelle 9-4: Mapping der Modbus Register 'Holding Register)	Beschreibung	Нех	Dezimal	5-Digit	Modicon
	Eingänge gepackt	0×0000 bis 0×01FF	0 bis 511	40001 bis 40512	400001 bis 400512
	Ausgänge gepackt	0×0800 bis 0×09FF	2048 bis 2549	42049 bis 42560	402049 bis 402560
	Stations-Kennung	0×1000 bis 0×1006	4096 bis 4102	44097 bis 44103	404097 bis 404103
	Stations-Status	0×100C	4108	44109	404109
	Prozessabbildlänge in Bit der intelligenten Ausgabemodule	0×1010	4112	44113	404113
	Prozessabbildlänge in Bit der intelligenten Eingabemodule	0×1011	4113	44114	404114
	Prozessabbildlänge in Bit der digitalen Ausgabemodule	0×1012	4114	44115	404115
	Prozessabbildlänge in Bit der digitalen Eingabemodule	0×1013	4115	44116	404116
	Watchdog, aktuelle Zeit	0×1020	4128	44129	404129
	Watchdog, vordefinierte Zeit	0×1120	4384	44385	404385
	Modbus Connection Mode Register	0×1130	4400	44401	404401
	Modbus Connection Timeout in Sek.	0×1131	4401	44402	404402
	Modbus Parameter Restore	0×113C bis 0×113D	4412 bis 4413	44413 bis 44414	404413 bis 404414
	Modbus Parameter Save	0×113E bis 0×113F	4414 bis 4415	44415 bis 44416	404415 bis 404416
	Protokoll deaktivieren	0×1140	4416	44417	404417
	Aktives Protokoll	0×1141	4417	44418	404418
	Systemspannung U _{SYS} [mV]	0×2400	9216	49217	409217
	Lastspannung U _L [mV]	0×2401	9217	49218	409218
	Prozessdaten Eingänge (max. 2 Register pro Station)	0×8000, 0×8001	32768, 32769	-	432769, 432770

Tabelle 9-4: Mapping der Modbus Register (Holding Register)	Beschreibung	Hex	Dezimal	5-Digit	Modicon
	Prozessdaten Ausgänge (max. 2 Register pro Station)	0×9000, 0×9001	36864, 36865	-	436865, 436866
	Diagnosen (max. 2 Register pro Station)	0×A000, 00A001	40960, 40961	-	440961, 440962
	Parameter (max. 4 Register pro Station)	0×B000, 0×B001	45056, 45057	-	445057, 445058

9.3.1 Datenbreiten der IO-Stationen im Modbus-Registerbereich

Die folgende Tabelle enthält Angaben zur Datenbreite der FGEN-Stationen im Modbus-Registerbereich und die Art des Datenalignments.

Tabelle 9-5: Datenbreiten der Stationen	Station	Prozesseingabe	Prozessausgabe	Alignment
	FGEN-IM16-x001	16 Bit	-	bitweise
	FGEN-OM16-x001	-	16 Bit	bitweise
	FGEN-IOM88-x001	8 Bit	8 Bit	bitweise
	FGEN-XSG16-x001	16 Bit	16 Bit	bitweise

9.3.2 Registermapping der FGEN-Stationen

FGEN-IM16-x001

Register		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
gepackte	Eingangsdat	en		•	•	•			
0×0000	Eingänge	DI7 C3P2	DI6 C3P4	DI5 C0P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4
		DI15 C7P2	DI14 C7P4	DI13 C6P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C4P4
0×0001	Status- Wort	-	-	-	-	-	-	-	Diag Warn
		-	FCE	-	-	CFG	COM	U _B	-
0×0002	Sammel-	-	-	-	-	-	-	-	I/O Diag
	diagnose	-	-	-	-	-	-	-	-
Eingänge	1	•		•	•	•			
0×8000		DI7 C3P2	DI6 C3P4	DI5 C0P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4
		DI15 C7P2	DI14 C7P4	DI13 C6P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C4P4
Diagnose	daten		l	Į.	I.	Į.	l		l
0×A000		SCS7	SCS6	SCS5	SCS4	SCS3	SCS2	SCS1	SCS0
		-	-	-	-	-	-	-	-
Paramete	r	•	•	•	•	•	•	•	•
0×B000		-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-
0×B001		Inv. DI7	Inv. DI6	Inv. DI5	Inv. DI4	Inv. DI3	Inv. DI2	Inv. DI1	Inv. DI0
		Inv. DI15	Inv. DI14	Inv. DI13	Inv. DI12	Inv. DI11	Inv. DI10	Inv. DI9	Inv. DI8

[→] Bedeutung der Registerbits (Seite 9-15)

FGEN-OM16-x001

Register		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
gepackte	Eingangsdat	en		•					•
0×0001	Status- Wort	U _L	-	-	-	-	-	-	Diag Warn
		-	FCE	-	-	CFG	СОМ	U _B	-
0×0002	Sammel-	-	-	-	-	-	-	-	I/O Diag
	diagnose	-	-		-	-	-	-	-
gepackte	Ausgangsda	ten		•					•
0×0800		DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
		DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4
Ausgänge			l	J	l		l		
0×9000		DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
		DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4
Diagnose	daten			•					•
0×A000		-	-	-	-	-	-	-	-
		SCO7	SCO6	SCO5	SCO4	SCO3	SCO2	SCO1	SCO0
0×A001		SCO15	SCO14	SCO13	SCO12	SCO11	SCO10	SCO9	SCO8
		-	-	-	-	-	-	-	-
Paramete	r	•	•	•	•	•	•	•	•
0×B000		SROx7	SROx6	SROx5	SROx4	SROx3	SROx2	SROx1	SROx0
		SROx15	SROx14	SROx13	SROx12	SROx11	SROx10	SROx9	SROx8

[→] Bedeutung der Registerbits (Seite 9-15)

FGEN-IOM88-x001

Register		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
gepackte	Eingangsdat	en	•		•		•		
0×0000	Eingänge	DI7 C3P2	DI6 C3P4	DI5 C0P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4
		-	-		-	-	-	-	-
0×0001	Status- Wort	U _L	-	-	-	-	-	-	Diag Warn
		-	FCE	-	-	CFG	СОМ	U _B	-
0×0002	Sammel-	-	-	-	-	-	-	-	I/O Diag
	diagnose	-	=	=	=	=	=	-	-
Eingänge									
0×8000		DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
		-	-		-	-	-	-	-
gepackte	Ausgangsda	ten	•		•		•		
0×0800		DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 0P2	DO0 C0P4
		-	-	-	-	-	-	-	-
Ausgänge	1	•	•		•		•		
0×9000		DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
		-	-	-	-	-	-	-	-
Diagnose	•	1	•	1	•	1	•	1	•
0×A000		-	-	-	-	SCS3	SCS2	SCS1	SCS0
		SCO7	SCO6	SCO5	SCO4	SCO3	SCO2	SCO1	SCO0
Paramete	r	•	•	•	•	•	•	•	•
0×B000		Inv. DI7	Inv. DI6	Inv. DI5	Inv. DI4	Inv. DI3	Inv. DI2	Inv. DI1	Inv. DI0
		SROx7	SROx6	SROx5	SROx4	SROx3	SROx2	SROx1	SROx0

[→] Bedeutung der Registerbits (Seite 9-15)

FGEN-XSG16-x001

Register		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
gepackte	Eingangsdat	en	<u>I</u>	I.	<u>I</u>	l	<u>I</u>	I.	<u>I</u>
0×0000	Eingänge	DI7 C3P2	DI6 C3P4	DI5 C0P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4
		DI15 C7P2	DI14 C7P4	DI13 C6P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C4P4
0×0001	Status- Wort	U _L	-	-	-	-	-	-	Diag Warn
		-	FCE	-	-	CFG	СОМ	U _B	-
0×0002	Sammel-	-	-	-	-	-	-	-	I/O Diag
	diagnose	-	-	-	-	-	-	-	-
Eingänge									
0×8000		DI7 C3P2	DI6 C3P4	DI5 C0P2	DI4 C2P4	DI3 C1P2	DI2 C1P4	DI1 C0P2	DI0 C0P4
		DI15 C7P2	DI14 C7P4	DI13 C6P2	DI12 C6P4	DI11 C5P2	DI10 C5P4	DI9 C4P2	DI8 C4P4
gepackte	Ausgangsda	ten	I .	I .	I .		I .	I .	I .
0×0800		DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
		DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4
Ausgänge	•		I	I	I		I	I	I
0×9000		DO7 C3P2	DO6 C3P4	DO5 C2P2	DO4 C2P4	DO3 C1P2	DO2 C1P4	DO1 C0P2	DO0 C0P4
		DO15 C7P2	DO14 C7P4	DO13 C6P2	DO12 C6P4	DO11 C5P2	DO10 C5P4	DO9 C4P2	DO8 C4P4
Diagnose			<u>I</u>	I.	<u>I</u>	l	<u>I</u>	I.	<u>I</u>
0×A000		SCS7	SCS6	SCS5	SCS4	SCS3	SCS2	SCS1	SCS0
		SCO7	SCO6	SCO5	SCO4	SCO3	SCO2	SCO1	SCO0
0×A001		SCO15	SCO14	SCO13	SCO12	SCO11	SCO10	SCO9	SCO8
		-	-	-	-	-	-	-	-
Paramete	r								
0×B000		-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-
0×B001		Inv. DI7	Inv. DI6	Inv. DI5	Inv. DI4	Inv. DI3	Inv. DI2	Inv. DI1	Inv. DI0
		Inv. DI5	Inv. DI14	Inv. DI13	Inv. DI12	Inv. DI11	Inv. DI10	Inv. DI9	Inv. DI8
0×B002		SRO7	SRO6	SRO5	SRO4	SRO3	SRO2	SRO1	SRO0
		SRO15	SRO14	SRO13	SRO12	SRO11	SRO10	SRO9	SRO8
0×B003		EN DO7	EN DO6	EN DO5	EN DO4	EN DO3	EN DO2	EN DO1	EN DO0
		EN DO15	EN DO14	EN DO13	EN DO12	EN DO11	EN DO10	EN DO9	EN DO8

[→] Bedeutung der Registerbits (Seite 9-15)

Bedeutung der Registerbits

Table 9-6:
Bedeutung der
Registerbits

Name	Bedeutung
I/O-Daten	
Dlx	DI = Digitaleingang
DOx	DO = Digitalausgang
Сх	C = Buchse
Px	P = Pin
Diagnose	
DiagWarn	Siehe Register 100Ch: "Stations-Status" (Seite 9-16)
U _B	
U _L	
COM	
CFG	
FCE	
I/O Diag	Sammeldiagnose der I/O-Kanäle
SCSx	Kurzschluss an der Sensorversorgung des jeweiligen Kanals
SCOx	Kurzschluss am Ausgang des jeweiligen Kanals
Parameter	
Inv. Dlx	Das Eingangssignal am entsprechenden Kanal wird invertiert.
SROx	0 = aktiviert A Der Ausgang schaltet sich bei Überstrom automatisch wieder ein. 1 = deaktiviert Der Ausgang schaltet sich bei Überstrom erst nach Zurücknehmen und erneutem Wiedereinschalten wieder ein.
EN DOx	Deaktiviert bzw. aktiviert den Ausgang an der jeweiligen Buchse des Gerätes. 0 = deaktiviert 1 = aktiviert A

9.3.3 Register 100Ch: "Stations-Status"

Dieses Register enthält einen allgemeinen Stations-Status.

Tabelle 9-7: Register 100Ch: Stations-Status	Bit	Name	Beschreibung						
	Statio	n							
	15	-	-						
	14	FCE	Der Force-Mode ist aktiviert, d. h. die Ausgangszustände entsprechen unter Umständen nicht mehr den, vom Feldbus gesendeten, Vorgaben.						
	13	-	-						
	12	-	-						
	Modu	lbus							
	11 CFG I/O-Konfigurationsfehler								
-	10	СОМ	Kommunikation auf dem internen Modulbus gestört.						
	Spannungsfehler								
	9	U_B	Systemversorgungsspannung zu niedrig (< 18 V DC).						
	8	-	-						
	7	U_L	Lastspannung zu niedrig (< 18 V DC).						
	6	-	-						
	5	-	-						
	4								
	Warnungen								
	3	-	-						
	2	-	-						
	1	<u>-</u>	-						
	0	DiagWarn	Es liegen Diagnosemeldungen am Gerät an.						

9.3.4 Register 1130h: "Modbus-Connection-Mode"

Dieses Register beeinflusst das Verhalten der Modbus-Connections.

Tabelle 9-8:	Bit	Name						
Register 1130h: Modbus-		– Beschreibung						
Connection-	15 bis 2	reserviert						
Mode	1	MB_ImmediateWritePermission						
		 O: beim ersten Schreibzugriff wird für die entsprechende Modbus-Connection das Schreibrecht angefordert. Bei einem Misserfolg wird ein Exception Response mit Exception-Code 01h erzeugt. Im Erfolgsfall wird der Schreibzugriff ausgeführt und das Schreibrecht bleibt bis zum Ende der Connection erhalten. 1: schon beim Verbindungsaufbau wird für die entsprechende Modbus-Connection das Schreibrecht angefordert. Die erste Modbus-Connection erhält folglich das Schreibrecht, alle folgenden gehen leer aus (sofern Bit 0 = 1) 						
	0	MB_OnlyOneWritePermission						
		 O: alle Modbus-Connections haben Schreibrechte 1: immer nur eine Modbus-Connection kann das Schreibrecht zugeteilt bekommen. Ein einmal zugeteiltes Schreibrecht bleibt bis zum Disconnect erhalten. Nach dem Disconnect der schreibberechtigten Connection erhält die nächste Connection, die einen Schreibzugriff versucht, das Schreibrecht. 						

9.3.5 Register 1131h: "Modbus-Connection-Timeout"

Dieses Register bestimmt, nach welcher Zeit der Inaktivität einer Modbus-Connection diese durch ein Disconnect beendet wird.

9.3.6 Register 0×113C und 0×113D: "Restore Modbus-Verbindungs-Parameter"

Register 0×113 C und 0×113 D dienen zum Rücksetzen der Parameter-Register 0×1120 und 0×1130 bis 0×113 B auf die Defaulteinstellungen.

Dazu muss zunächst das Register 0×113 C mit 0×6 C6F beschrieben werden. Nun muss innerhalb von 30 Sekunden das Register 0×113 D mit 0×6164 beschrieben werden ("load"), um das Wiederherstellen der Register auszulösen.

Mit den Funktionen FC16 und FC23 können beide Register auch mit einem einzigen Request beschrieben werden.

Dieser Dienst stellt die Parameter wieder her, ohne sie jedoch zu speichern. Dies kann durch einen anschließenden Save-Dienst erreicht werden.

9.3.7 Register 0×113E und 0×113F: "Save Modbus-Verbindungs-Parameter"

Register $0 \times 113E$ und $0 \times 113F$ dienen zum nichtflüchtigen Speichern der Parameter in den Registern 0×1120 und 0×1130 bis $0 \times 113B$.

Dazu muss zunächst das Register 0×113 E mit 0×7361 beschrieben werden. Nun muss innerhalb von 30 Sekunden das Register 0×113 F mit 0×7665 beschrieben werden ("save"), um das Speichern der Register auszulösen.

Mit den Funktionen FC16 und FC23 können beide Register auch mit einem einzigen Request beschrieben werden.

9.4 Bit-Bereiche: Mapping der Input-Discrete- und Coil-Bereiche

Die digitalen Ein- und Ausgänge können wie bereits beschrieben als Register im Datenbereich der gepackten Ein- und Ausgangsdaten gelesen und im Falle von Ausgängen beschrieben werden.

Hinweis

In den gepackten Prozessdaten liegen die digitalen Ein- und Ausgänge jedoch hinter dem variablen Ein-/ Ausgabe-Bereich der intelligenten I/Os, also auf einem Offset, der von der übrigen I/O-Konfiguration abhängig ist.

Um z. B. einen einzelnen Ausgang (Single Coil) setzen zu können, stehen die folgende Funktionen zum Lesen und Schreiben einzelner Bits zur Verfügung:

- FC1 ("Read Coils"),
- FC2 ("Read Discrete Inputs"),
- FC 5 ("Write Single Coil")
- FC15 ("Write Multiple Coils")

Datenmapping in den Input-Discrete- und Coil-Bereichen:

- Mapping: Input-Discrete-Bereich Hier liegen alle digitalen Inputs ab Offset "0".
- Mapping: Coil-Bereich Hier liegen alle digitalen Outputs ab Offset "0".

9.5 Verhalten der Ausgänge im Fehlerfall (Watchdog)

Im Falle eines Ausfalls der Modbus-Kommunikation verhalten sich die Ausgänge der Station, in Abhängigkeit von der definierten Zeit für den Watchdog (Register 0×1120, Seite 9-7), wie folgt:

- Watchdog = 0 ms (Default)
 - → Ausgänge behalten im Fehlerfall den Momentanwert bei
- Watchdog > 0 ms
 - \rightarrow Ausgänge gehen im Fehlerfall nach der abgelaufenen Watchdogzeit (Einstellung in Register 0×1120) auf **0**

Hinweis

Das Setzen der Ausgänge auf definierte Ersatzwerte ist bei Modbus TCP nicht möglich! Eventuell parametrierte Ersatzwerte werden nicht berücksichtigt.

9.6 Parameter und Diagnosemeldungen der I/O-Kanäle

Hinweis

Erläuterungen zu den Parametern und den Diagnosen der Stationen und entnehmen Sie bitte dem Abschnitt Registermapping der FGEN-Stationen (Seite 9-11).

Implementierung von Modbus TCP

10 Anwendungsbeispiel: FGEN für Modbus TCP mit CoDeSys Win V3

10.1	Verwendete Hard-/Software	10-2
10.1.1	Hardware	
10.1.2	Software	10-2
10.2	Netzwerkkonfiguration	10-3
10.3	Programmierung mit CoDeSys	10-4
10.3.1	Vordefinierte Feature Sets	10-4
10.3.2	Erstellen eines neuen Projektes	10-5
10.3.3	Definieren der Kommunikationseinstellungen	10-7
	- Gateway definieren	10-7
	- Kommunikationspfad setzen	10-8
10.3.4	Hinzufügen des Ethernet-Adapters	10-9
10.3.5	Hinzufügen des Modbus Masters	10-10
10.3.6	Anhängen eines Modbus TCP-Slaves	10-11
10.3.7	Programmierung (Beispielprogramm)	10-13
	- Kleines Beispielprogramm	10-13
10.3.8	CoDeSys: Globale Variablen	10-14
	- Globale Variablenliste	10-15
10.3.9	Modbus-Kanäle	10-15
	- Modbus-Datenmapping	10-16
	– Einrichten der Modbus-Kanäle (Beispiele)	10-17
10.3.10	Übersetzen, Einlogen und Start	
10.3.11	Auslesen der Prozessdaten	
10.3.12	Auswertung des Status-Worts von FGEN-XSG16-5001 (%IW1)	10-27

10.1 Verwendete Hard-/Software

10.1.1 Hardware

- FGEN-IOM88-5001 (IP-Adresse 192.168.1.90)
- FGEN-XSG16-5001 (IP-Adresse 192.168.1.107)

10.1.2 Software

- CoDeSys 3.4, SP3, Patch 1
- Steuerung: CoDeSys Control Win V3 (3.4.3.10)

10.2 Netzwerkkonfiguration

Die FGEN-Stationen werden im Adressier-Modus "PGM-DHCP", Schalterstellung "600", ausgeliefert und können dann unter der IP-Adresse **192.168.1.254** angesprochen werden.

Hinweis

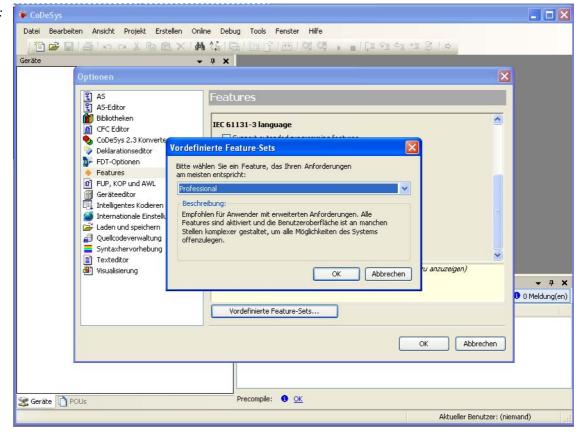
Um eine Kommunikation zwischen den FGEN-Stationen und einer SPS/einem PC oder einer Netzwerkkarte herzustellen, müssen beide Geräte Teilnehmer eines Netzwerkes sein.

Dazu müssen Sie entweder

die IP-Adresse des FGEN über BootP, DHCP etc. anpassen, um das Gerät in Ihr eigenes Netzwerk zu integrieren (detaillierte Informationen zu den unterschiedlichen Möglichkeiten der Adressierung finden Sie unter Kapitel 3, Anschlussmöglichkeiten, Seite 3-7).

oder

die IP-Adresse des verwendeten PCs oder der Netzwerkkarte ändern (detaillierte Informationen finden Sie unter Änderung der IP-Adresse eines PCs/einer Netzwerkkarte, Seite 14-2).

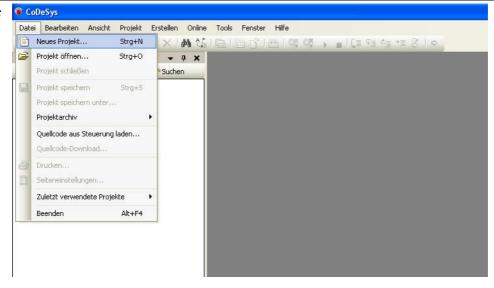

10.3 Programmierung mit CoDeSys

Öffnen Sie CoDeSys über "Start ightarrow Alle Programme
ightarrow 3 S CoDeSys
ightarrow CoDeSys V 3.4".

10.3.1 Vordefinierte Feature Sets

In diesem Beispiel wird CoDeSys mit dem "Professional Feature Set", nicht mit dem "Standard Feature Set" betrieben. Diese Einstellung beeinflusst verschiedene Funktionen von CoDeSys und kann über "Tools — Optionen..." im "Features-Editor unter "Vordefinierte Feature Sets…" verändert werden. Für weitere Information hierzu lesen Sie bitte die CoDeSys Online-Hilfe.

Abbildung 10-1: Vordefinierte Feature Sets



10.3.2 Erstellen eines neuen Projektes

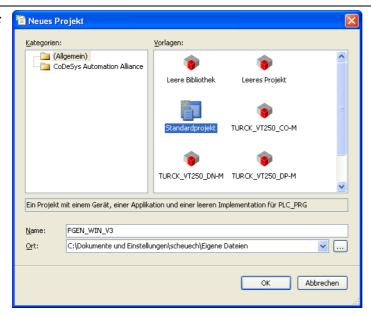

1 Erstellen Sie ein neues CoDeSys-Projekt über "Datei \rightarrow Neues Projekt".

Abbildung 10-2: Neues Projekt

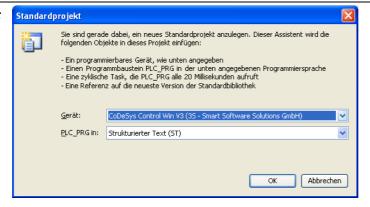

2 Wählen sie ein "Standardprojekt" und vergeben Sie einen beliebigen Namen.

Abbildung 10-3: Standardprojekt

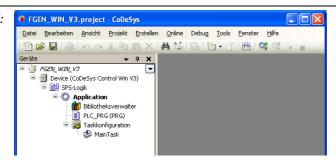

3 Bestimmen Sie hier auch Ihre bevorzugte Programmiersprache. In diesem Beispiel wird Strukturierter Text verwendet.

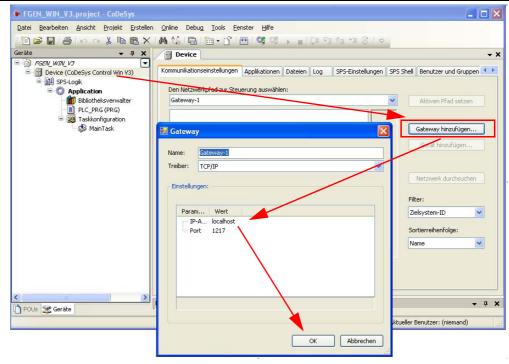
Abbildung 10-4: Auswahl der CoDeSys Control Win V3

- 4 Das neue Projekt ist erstellt.
- 5 In CoDeSys sieht der Projektbaum wie folgt aus:

Abbildung 10-5: Projektbaum

Hinweis

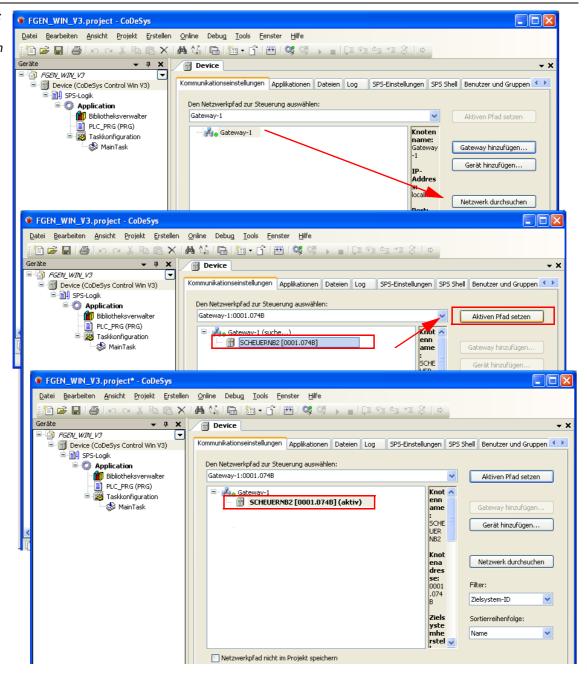
Sollte das Fenster "Geräte" nicht eingeblendet sein, können Sie dies über "Ansicht $\rightarrow \;$ Geräte" ändern.


10.3.3 Definieren der Kommunikationseinstellungen

Ein Doppelklick auf das "Device (CoDeSys Control Win V3)" öffnet die dazugehörigen Editoren. Im Register "Kommunikationseinstellungen" wird der Kommunikationspfad (Gateway) zum HMI definiert.

Gateway definieren

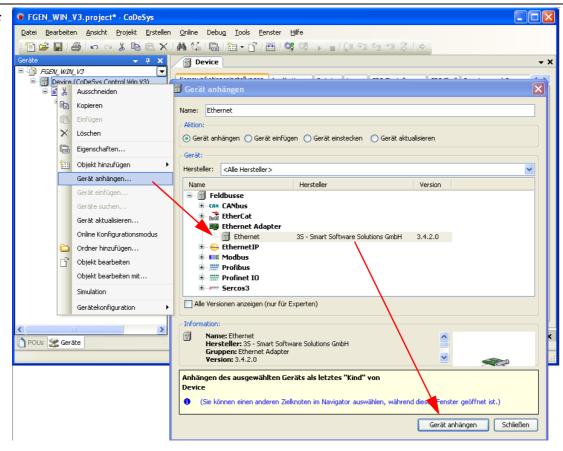
- **1** Öffnen Sie über die Schaltfläche "Gateway hinzufügen" den Dialog "Gateway" und vergeben Sie ggf. einen neuen Gateway-Namen.
- **2** Belassen Sie es bei der Einstellung "localhost", oder definieren Sie stattdessen eine IP-Adresse für das Gateway.
 - Bei der Einstellung "localhost" wird das lokale CoDeSys-Kommunikations-Gateway des PCs, auf dem diese CoDeSys-Installation installiert ist, als Programmierschnittstelle genutzt.


Abbildung 10-6: Kommunikationseinstellungen

Kommunikationspfad setzen

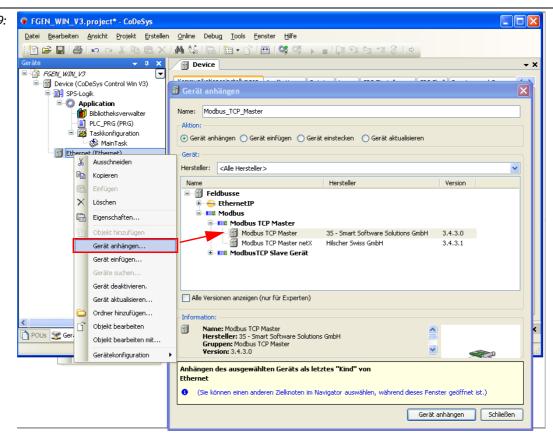
- **1** Markieren Sie das Gateway und durchsuchen Sie über die entsprechende Schaltfläche das Netzwerk.
- 2 Die Netzwerkkarte Ihres PCs wird gefunden und dann von Ihnen als aktiver Pfad gesetzt.

Abbildung 10-7: Kommunikationspfad setzen



10.3.4 Hinzufügen des Ethernet-Adapters

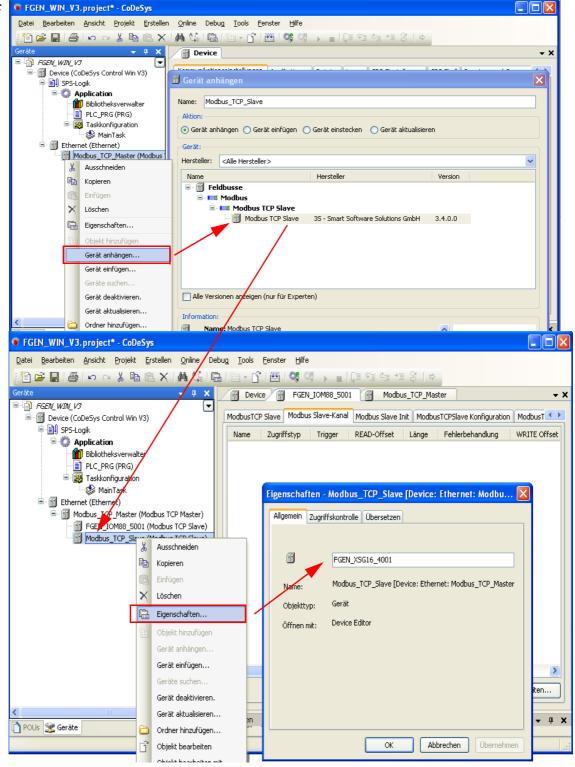
Öffnen Sie per Rechtsklick auf den Eintrag des Device das Kontextmenü, wählen Sie im Dialog "Gerät anhängen" unter "Feldbusse $\rightarrow \;$ Ethernet Adapter" den Ethernet-Adapter von 3S aus und fügen Sie ihn dem Projektbaum hinzu.


Abbildung 10-8: Ethernet-Adapter als Gerät anhängen

10.3.5 Hinzufügen des Modbus Masters

Ein Rechtsklick auf den Ethernet-Adapter öffnet das Kontextmenü. Wählen Sie hier "Gerät anhängen" und fügen Sie den Modbus TCP-Master dem Projektbaum hinzu.

Abbildung 10-9: Anhängen des Modbus-Masters



10.3.6 Anhängen eines Modbus TCP-Slaves

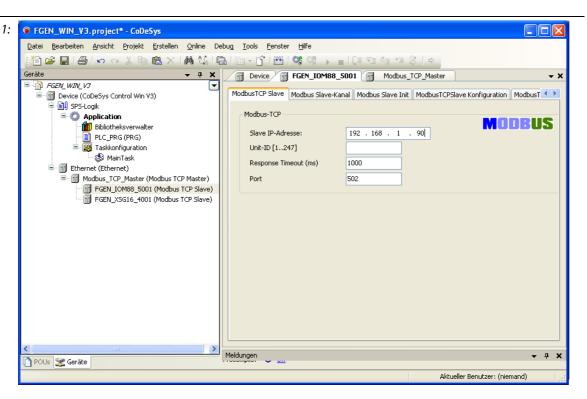

1 Fügen Sie nun die Modbus TCP-Slaves zum Projekt hinzu und benennen Sie sie ggf. um.

Abbildung10-10: Auswahl eines Slaves

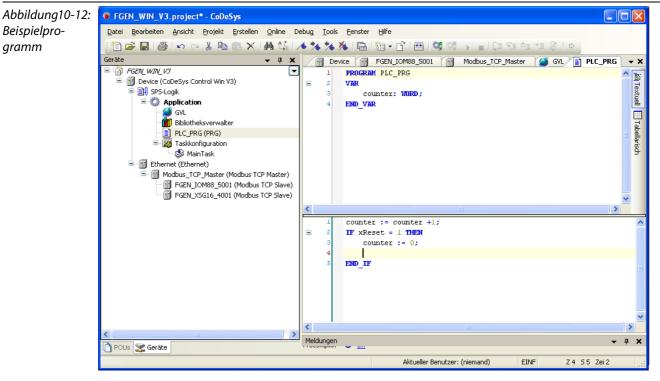
- **2** Per Doppelklick auf den Eintrag des Slaves im Projektbaum öffnen Sie auch hier die dazugehörigen Editoren.
- **3** Stellen Sie im Register "Modbus TCP Slave" die IP-Adresse des Knotens ein (hier im Beispiel: Adresse **192.168.1.90** für FGEN-IOM88-5001 und **192.168.1.107** für FGEN-XSG16-5001). Alle anderen Einstellungen können beibehalten werden.

Abbildung10-11: Setzen der IP-Adresse am Slave

10.3.7 **Programmierung (Beispielprogramm)**

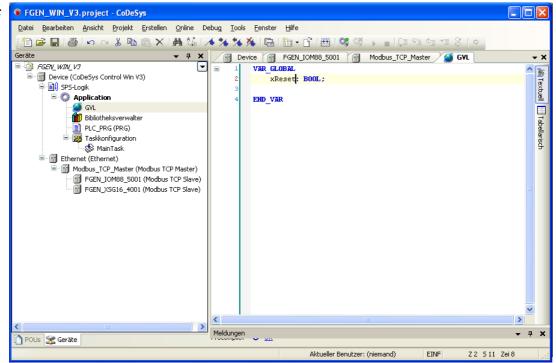
Die Programmierung erfolgt im Projektbaum unter PLC PRG. In diesem Beispiel wird in Structured Text (ST) programmiert wie unter Erstellen eines neuen Projektes (Seite 10-5) definiert.

Kleines Beispielprogramm


- 1 Counter zählt hoch,
- 2 Counter-Reset über Setzen der Variable "xReset" (BOOL) auf "1". "xReset" wurde in den globalen Variablen (siehe auch Seite 10-14) definiert.

Hinweis

Im Prozessabbild wird der Status von Prozesswerten nur dann angezeigt, wenn auf diese in einem Programm zugegriffen wird bzw. wenn im "MobusTCPSlave I/O Abbild" (siehe Auslesen der Prozessdaten, Seite 10-26) die Funktion "Variablen immer aktualisieren" aktiviert ist.


Beispielprogramm

10.3.8 CoDeSys: Globale Variablen

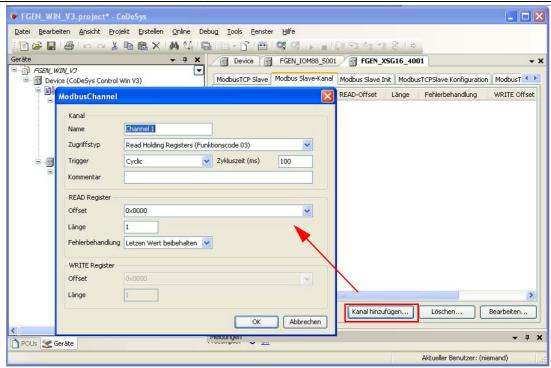
Globale Variablen werden entweder in der Globalen Variablenliste (siehe Seite 10-15) oder direkt in den I/O-Abbildern der einzelnen Stationen definiert.

Abbildung10-13: Beispiel der Definition einer globalen Variablen

Globale Variablenliste

Auch die Erstellung einer "Globalen Variablenliste" ist möglich: Rechtsklick auf "APPL" → "Objekt hinzufügen" → "Globale Variablenliste".

Definieren Sie die Globalen Variablen. Sie werden beim Übersetzen des Projektes automatisch mit exportiert, wenn sie in der Symbolkonfiguration zum Export ausgewählt wurden (siehe auch Vordefinierte Feature Sets, Abbildung 10-1:, Seite 10-4).


10.3.9 Modbus-Kanäle

Die Kommunikation zwischen Modbus TCP-Master und Modbus-Slaves erfolgt über definierte Modbus-Kanäle.

Diese Kanäle werden bei den jeweiligen Modbus-Slaves im Register "Modbus Slave-Kanal" über die Schaltfläche "Kanal hinzufügen" eingerichtet.

Die Prozessdaten des Slaves sind dann entsprechend der eingerichteten Kanäle unter "ModbusTCPSlave I/O Abbild" (siehe 10.3.11, Auslesen der Prozessdaten, Seite 10-26) zu beobachten.

Abbildung10-14: Einrichten der Modbus-Kanäle, Beispiel

Die Modbus-Kommunikationskanäle werden definiert über:

- "Zugriffstyp": Modbus-Function Code, der die Art und Weise des Zugriffs (bit- bzw- wortweise, lesend bzw. schreibend) definiert
- "READ Register" bzw. "WRITE Register" → "Offset": Angabe der Start-Adresse der zu lesenden oder zu schreibenden Register des Modbus-Slaves. Diese Angaben sind der Modbus-Dokumentation des Slaves zu entnehmen!

Modbus-Datenmapping

Das Mapping der Ein- und Ausgangsdaten einer FGEN-Modbus-Station hängt von Ihrem Aufbau ab.

Das Datenmapping der einzelnen FGEN-Stationen finden Sie in Kapitel 9, Abschnitt Registermapping der FGEN-Stationen (Seite 9-11).

Darüber hinaus bietet die TURCK-Software "I/O-ASSISTANT" die Möglichkeit für jede Modbus-Station einen Modbus-Report zu erstellen, der das Mapping der betreffenden Station detailliert darstellt (siehe unten).

Modbus-Mapping (I/O-ASSISTANT)

Abbildung10-15: 2.1. Station description

Modbus Report

I/O-ASSISTANT

Station	address:	192.168.1.107

Adr./Slot	Name	TAG	Data Size In	Data Size Out
0*	FGEN-XSG16-4001	192.168.1.107/FGEN -XSG16-4001	16 bit	0 bit
1	Intem-XSG16	01/Intem-XSG16	16 bit	16 bit
	Local I/O data incl. status/control		1 Word	1 Word
	Summarized diagnostics		1 Word	0 Words
Total size for i	in/out data rounded on full words		3 Words	1 Word

^{*}For detailed information about status/control word see online help

2.2. I/O map for input data

Register			Bit position														
Hex	Dec	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000	0000	01.15	01.14	01.13	01.12	01.11	01.10	01.09	01.08	01.07	01.06	01.05	01.04	01.03	01.02	01.01	01.00
*0x0001	0001	GW.15	GW.14	GW.13	GW.12	GW.11	GW.10	GW.09	GW.08	GW.07	GW.06	GW.05	GW.04	GW.03	GW.02	GW.01	GW.00
**0x0002	0002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	M00

Description: 1.Column=Register address, n. Column=Modul number.bitposition

Process input data: 3 Words

2.3. I/O map for output data

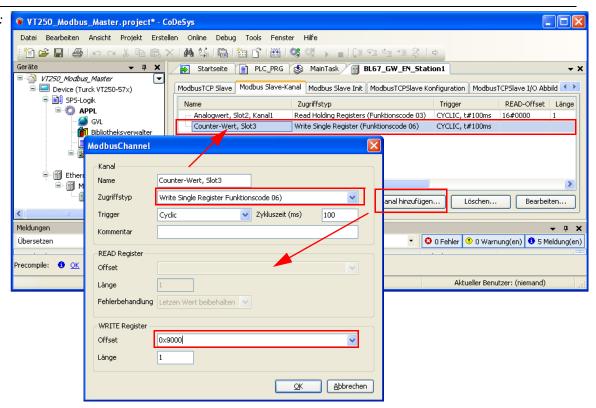
Regist	ter		Bit position														
Hex	Dec	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0800	2048	01.15	01.14	01.13	01.12	01.11	01.10	01.09	01.08	01.07	01.06	01.05	01.04	01.03	01.02	01.01	01.00

Description: 1.Column=Register address, n. Column=Modul number.bitposition

Process output data: 1 Word

Genauere Informationen zu den Modbus-Registern der FGEN-Stationen entnehmen Sie bitte den Beschreibungen in Kapitel 9.

GW: gateway status-/diagnostics bits


^{*)} GW: gateway status-/diagnostics bits
**) M: module diagnostics (1 bit for each module)

Einrichten der Modbus-Kanäle (Beispiele)

- 1 Schreiben von **%QW0** und Mappen des Zählerwertes (VAR "Counter", siehe PLC_PRG, Seite 10-13) auf das Ausgangsbyte der Station FGEN-XSG16-5001 (%QW0).
- **1.1** Schreiben: %QW0
 - Zugriffstyp:
 Write Single Register (Funktionscode **06**)
 - Write Register, Offset:
 0x9000 (siehe Registermapping der FGEN-Stationen, FGEN-XSG16-x001 (Seite 9-14))
 Die Prozess-Ausgangsdaten der Station befinden sich im Register 0x9000 .

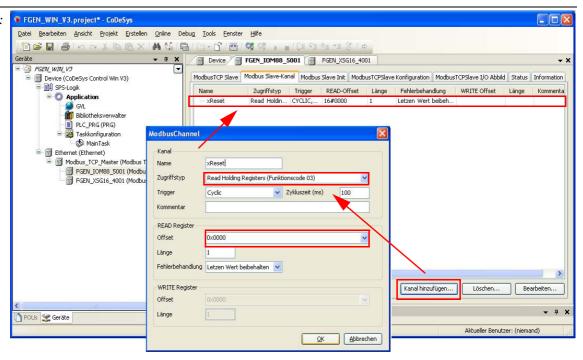
Abbildung10-16: Modbus-Kanal, Zähler-Wert, FC06

- **1.1** Mappen: Zähler-Wert auf %QW0
 - Das Mappen des Counter-Wertes (VAR "Counter") auf das Ausgangsregister der Station erfolgt im "ModbusTCPSlave I/O Abbild".
 - Doppelklicken Sie das Feld "Variable" der entsprechenden Zeile. Über die erscheinende Schaltfläche "…" öffnen Sie den Dialog "Eingabehilfe".

 Suchen Sie hier die zu verknüpfende Variable aus. "Counter" befindet sich unter "PLC_PRG", da sie dort definiert wurde, siehe Programmierung (Beispielprogramm).

Abbildung10-17: Mappen des Counter-Wertes auf %QW0

 Bestätigen Sie mit "OK". Der Counter-Wert wird nun auf %QW0 der Station gespiegelt und ausgegeben.



2 Lesen:

Bit 0 an FGEN-IOM88-5001 → Rücksetzen des Zählers (mit "xReset" = 1)

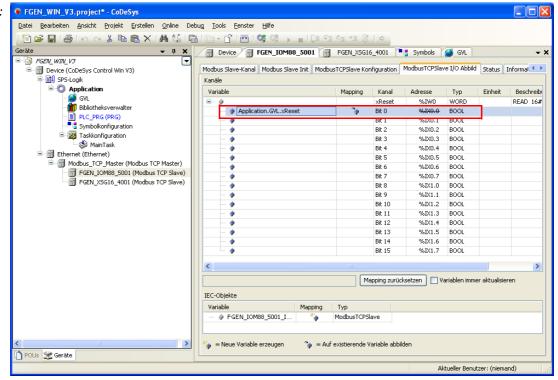
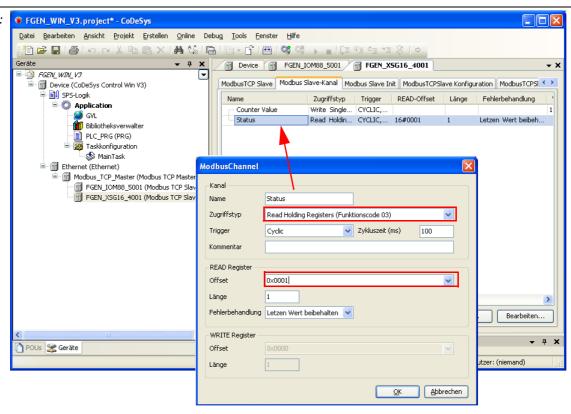

- **2.1** Lesen: %IW0
 - Zugriffstyp:Read Holding Register (Funktionscode **03**)
 - Read Register, Offset:
 0x0000 (siehe Registermapping der FGEN-Stationen, FGEN-XSG16-x001 (Seite 9-14)))

Abbildung10-18: Modbus-Kanal, "xReset" lesen, FC03

- **1.2** Mappen: "xReset" (globale Variabale) auf %IX0.0 in %IW0
 - "xReset" wird im "ModbusTCPSlave I/O Abbild" mit dem ersten Bit des %IW0 des FGEN-IOM88-5001 verknüpft.
 - Doppelklicken Sie das Feld "Variable" der entsprechenden Zeile. Über die erscheinende Schaltfläche "…" öffnen Sie den Dialog "Eingabehilfe".
 - Suchen Sie hier die zu verknüpfende Variable aus. "xReset" befindet sich unter den globalen Variablen (GVL), da sie dort definiert wurde, siehe CoDeSys: Globale Variablen.
 - Bestätigen Sie mit "OK". Eine "1" an Bit %IX0.0 wird nun den Counter auf Null zurücksetzen.

Abbildung10-19: Mappen von "xReset" auf Bit %IX0.0

3 Lesen:


Statusbyte der Station FGEN-XSG16-5001

Zugriffstyp:

Read Holding Registers (Funktionscode **03**)

- Read Register, Offset:
 0x0001 (siehe Registermapping der FGEN-Stationen, FGEN-XSG16-x001 (Seite 9-14).
- Das Status-Wort der Station wird aus Register 0×0001 augelesen.

Abbildung10-20: Einrichten des Modbus-Kanals zum Auslesen des Status-Worts

4 Schreiben:

Parameter der Station FGEN-XSG16-5001,

Ziel → Invertieren des Eingangssignals an Kanal 5

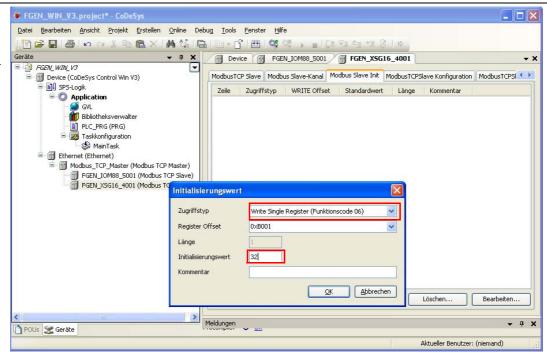
Das Schreiben von Parametern in der Regel einmalig beim Programmstart und wird daher nicht als "normaler" Modbus-Kanal unter "Modbus-Slave Kanal" angelegt sondern als Initialisierungs-Kanal unter "**Modbus Slave Init**" (siehe Abbildung 11: Einrichten des Initialisierungs-Kanals zur Parametrierung).

- Zugriffstyp:
 Write Single Register (Funktionscode **06**)
- Write Register, Offset:
 0×B001 (siehe Registermapping der FGEN-Stationen, FGEN-XSG16-x001 (Seite 9-14))

Die Parameter der Station liegen in den Registern 0×B000 bis 0×B003.

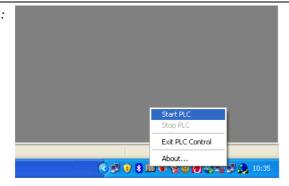
Parametrierung der Station

Parametriert werden soll in diesem Fall die Invertierung des Eingangssignals an Kanal 5 (I.5) der Station (Register 0×B001, Bit 5).


Die Parameterregister sind wie folgt belegt:

Reg.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0×B000	=	-	-	-	=	-	-	-
	-	-	-	-	-	-	-	-
0×B001	Inv. DI7	Inv. DI6	Inv. DI5	Inv. DI4	Inv. DI3	Inv. DI2	Inv. DI1	Inv. DI0
	Inv. DI15	Inv. DI14	Inv. DI13	Inv. DI12	Inv. DI11	Inv. DI10	Inv. DI9	Inv. DI8
0×B002	SRO7	SRO6	SRO5	SRO4	SRO3	SRO2	SRO1	SRO0
	SRO15	SRO14	SRO13	SRO12	SRO11	SRO10	SRO9	SRO8
0×B003	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

Geschrieben wird also in Register $0 \times B001$ eine $2^5 = 32$, die sich aus der Parameterbyte-Belegung zur Station ergibt.


Abbildung 11: Einrichten des Initialisierungs-Kanals zur Parametrierung

10.3.10 Übersetzen, Einlogen und Start

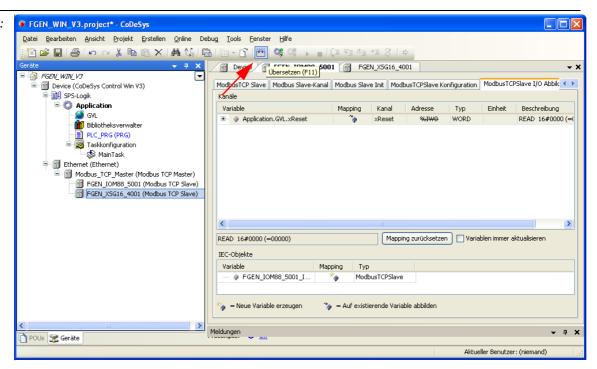
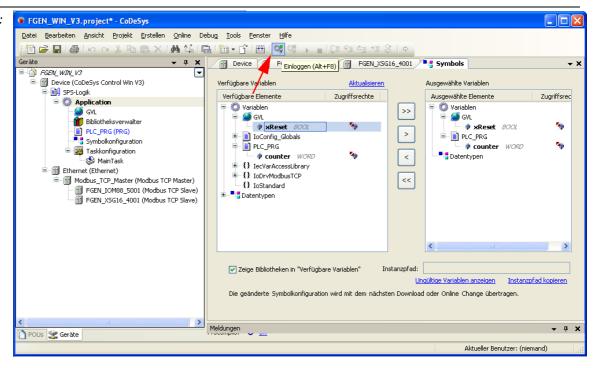

1 Die WIN V3-PLC muss gestartet sein. Dies geschieht in der Windows-Taskleiste:

Abbildung 10-1: Start der WIN V3-PI C

2 Übersetzen Sie das Programm:


Abbildung 10-2: Übersetzen des Programms

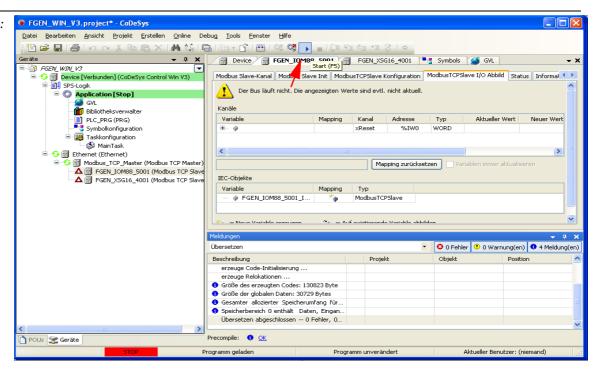
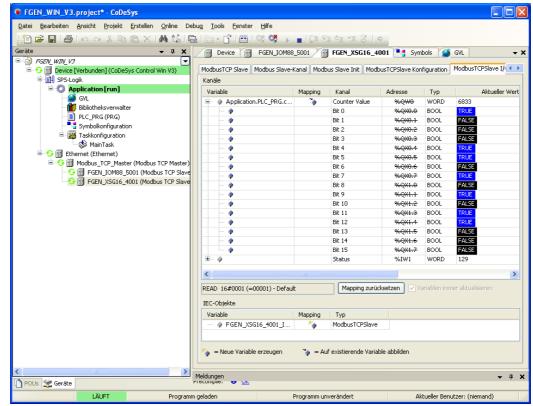

3 Loggen Sie sich ein:

Abbildung 10-3: Einloggen

4 Starten Sie das Programm:

Abbildung 10-4: Starten des Programms

10.3.11 Auslesen der Prozessdaten


Die Prozessdaten der Station werden in der Registerkarte "ModbusTCPSlave I/O Abbild" angezeigt.

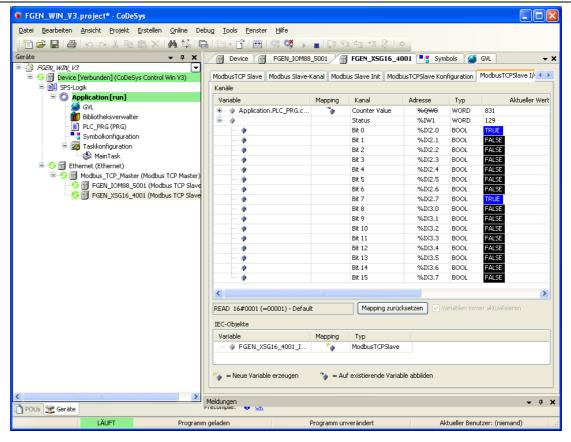
Hinweis

Damit die Prozessedaten regelmäßig aktualisiert werden, ist die Funktion "Variablen immer aktualisieren" zu aktivieren.

Abbildung 10-5: ModbusTCP Slave I/O Abbild

10.3.12 Auswertung des Status-Worts von FGEN-XSG16-5001 (%IW1)

%IW1 enthält laut Definition des Modbus-Kommunikationskanals (siehe Einrichten der Modbus-Kanäle (Beispiele), Beispiel 4, Seite 10-21) das Status-Wort der Station.


Die Meldung ist wie folgt zu interpretieren:

%IW 2, "Aktueller Wert" = 129

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0×0001	U _L	-	-	-	-	-	-	Diag Warn
	-	FCE	-	-	CFG	COM	U _B	-

- **1** Byte 0, Bit 0 = 1
 - → Status-Meldung: "DiagWarn" = Aktive Diagnosen
- **2** Byte 0, Bit 7 = 1
 - → Status-Meldung: "U_L" = Lastspannung nicht im zulässigen Bereich (< 18 V).

Abbildung 10-6: Status-Wort der Station

Anwendungsbeispiel: FGEN für Modbus TCP mit CoDeSys Win V3

11 Implementierung von PROFINET

11.1	FSU - Fast Start-Up (priorisierter Hochlauf)	11-2
11.1.1	AllgemeinesFSU in FGEN	11-2
11.1.2	FSU in FGEN	11-2
11.2	GSDML-Datei	11-3
11.3	PROFINET-Error Codes	11-4
11.4	Parameter	11-5
11.4.1	Allgemeine Modulparameter - Parameter für die Station (turck-fgen)	11-5
11.4.2	Parameter für I/O-Kanäle	11-6
11.5	Beschreibung der Nutzdaten für azyklische Dienste	11-7
11.5.1	Beschreibung der azyklischen Stations-Nutzdaten	11-7
11.5.2	Beschreibung der azyklischen I/O-Kanal-Nutzdaten	11-8

11.1 FSU - Fast Start-Up (priorisierter Hochlauf)

11.1.1 Allgemeines

FSU ermöglicht es einer Steuerung, Verbindungen zu PROFINET-Teilnehmer in weniger als 500 ms nach Einschalten der Versorgung des Netzwerkes herzustellen. Notwendig wird der schnelle Anlauf der Geräte vor allem bei schnellen Werkzeugwechseln an Roboterarmen z. B. in der Automobilindustrie.

Hinweis

Zur korrekten Ethernet-Verkabelung bei FGEN in FSU-Applikationen, siehe Ethernet-Anschluss bei QC-/FSU-Applikationen (Seite 3-7).

11.1.2 FSU in FGEN

Die TURCK FGEN-Stationen unterstützen den priorisierten Hochlauf FSU.

Um FSU zu ermöglichen, sind die Feldbusknoten im Konfigurator HW Konfig von Step 7 (Siemens) entsprechend zu konfigurieren.

Hinweis

Bitte lesen Sie hierzu Kapitel 12, Abschnitt Fast Start-Up - Konfiguration der Feldbusknoten (Seite 12-16).

11.2 GSDML-Datei

Die aktuelle GSDML-Datei für FGEN steht Ihnen auf der TURCK-Homepage www.turck.com zum Download zur Verfügung.

Tabelle 11-1:	Station	GSD-Datei
Bezeichnungen der GSDML- Dateien	FGEN	GSDML-V2.0-Turck-FGEN-JJJJMMTT-xxxxxxx.xml

11.3 PROFINET-Error Codes

Die kanalspezifischen Diagnosemeldungen sind wie folgt definiert:

Tabelle 11-2:	Wert (dez.)	Diagnose			
kanalspezifi- sche Diagnose-	Error-Codes (1 bis 9 nach Norm)				
meldungen	1	Kurzschluss am Kanal			
	2	Unterspannung: Unterspannung Kanal 0: Unterspannung an U _B Unterspannung Kanal 1: Unterspannung an U _L			
	Error-Codes (16 bis 31, herstellerspezifisch)				
	26	Externer Fehler: Überlast Sensorversorgung Die Station hat einen zu grossen Strom an der Sensorversorgung festgestellt.			

11.4 Parameter

Bei den Parametern der FGEN-Stationen muss zwischen den allgemeinen PROFINET-Parametern einer Station und den spezifischen Parametern der I/O-Kanäle unterschieden werden.

11.4.1 Allgemeine Modulparameter - Parameter für die Station (turck-fgen)

Tabelle 11-3: Parameter für die Station	Parametername	Wert	Bedeutung
A Default- Einstellung	Ausgänge Kommunikations-	00 = 0 ausgeben A	Die Station schaltet die Ausgänge auf "0". Es wird keine Fehlerinformation gesendet.
	fehler	10 = Momentanwert halten	Die Station behält die aktuellen Daten an den Ausgängen bei.
	Alle Diagnosen unterdrücken	0 = inaktiv A	Diagnose- und Alarmmeldungen werden erzeugt.
		1 = aktiv	Diagnose- und Alarmmeldungen werden unterdrückt.
	Lastspannungs- Diagnosen	0 = inaktiv A	Die Überwachung der Lastspannung \mathbf{U}_{L} ist aktiviert.
	unterdücken	1 = aktiv	Das Unterschreiten von U _L wird nicht ange- zeigt.
	I/O-ASSISTANT Force	0 = inaktiv A	Die einzelnen Feldbusprotokolle bzw. der
	Mode unterdrücken	1 = aktiv	 Webserver können hier explizit deativiert werden
	EtherNet/IP™	0 = inaktiv A	_
	deaktivieren	1 = aktiv	_
	Modbus TCP	0 = inaktiv A	_
	deaktivieren	1 = aktiv	_
	Webserver	0 = inaktiv A	_
	deaktivieren	1 = aktiv	_

11.4.2 Parameter für I/O-Kanäle

Tabelle 11-4: Parameter für I/O-Kanäle	Parametername	Wert	Bedeutung
A Default-	Digitaleingang x	0 = normal A	
Einstellung		1 = invertiert	Das Eingangssignal wird invertiert.
	Ausgang bei Überstrom	0 = automatisch wiedereinschalten A	Der Ausgang schaltet sich bei Überstrom automatisch wieder ein.
		1 = wiedereinschalten durch Signalwechsel	Der Ausgang schaltet sich bei Überstrom erst nach Zurücknehmen und erneutem Wieder- einschalten wieder ein.
	Ausgang	0 = deaktivieren	
		1 = aktivieren A	

11.5 Beschreibung der Nutzdaten für azyklische Dienste

Der azyklische Datenaustausch wird mit Hilfe der Record-Data-CRs (CR-> Communication Relation) durchgeführt.

Über diese Record Data-CRs wird das Lesen und Schreiben folgender Dienste abgewickelt:

- Schreiben von AR-Daten
- Schreiben von Konfigurationsdaten
- Lesen und Schreiben von Gerätedaten
- Lesen von Diagnosedaten
- Lesen der I/O-Daten
- Lesen der Identification Data Objects (I&M-Funktionen)

11.5.1 Beschreibung der azyklischen Stations-Nutzdaten

Tabelle 11-5: Module Applica- tion Instance	Index (dez.)	Name	Datentyp	r/w	Bemerkung
	1	Stations-Parameter	WORD	r/w	Parameterdaten der Station (Slot 0).
	2	Stations-Bezeichnung	STRING	r	Bezeichnung der Station (Slot 0)
	3	Stations-Revision	STRING	r	Firmware-Revision der Station
	4	Vendor-ID	WORD	r	Identnummer für TURCK
	5	Stations-Name	STRING	r	Der Station zugewiesener Gerätename
	6	Stations-Typ	STRING	r	Gerätetyp der Station
	7	Device-ID	WORD	r	Identnummer der Station
	8 bis 23	reserviert			
	24	Stations-Diagnose	WORD	r	Diagnosedaten der Station (Slot 0)
	25 bis 31	reserviert			
	32	Input-Liste	Array of BYTE	r	Liste aller Input-Kanäle der Station
	33	Output-Liste	Array of BYTE	r	Liste aller Output-Kanäle der Station
	34	DiagListe	Array of BYTE	r	Liste aller I/O-Kanal-Diagnosen
	35 (0×23)	Parameter-Liste	Array of BYTE	r	Liste aller I/O-Kanal-Parameter
	36 bis 45039	reserviert			
	45040 (0×AFF0)	I&M0-Funktionen		r	Identification & Maintaining- Dienste

Tabelle 11-5:
Module Applica-
tion Instance

Index	Name	Datentyp	r/w	Bemerkung
(dez.)				
45041 (0×AFF1)	I&M1-Funktionen	STRING [54]	r/w	I&M Tag Function and location
45042 (0×AFF2)	I&M2-Funktionen	STRING [16]	r/w	I&M Tag Function and location
45043 (0×AFF3)	I&M3-Funktionen	STRING [54]		
45044 (0×AFF4)	I&M4-Funktionen	STRING [54]		
45045 (0×AFF5) bis 45055 (0×AFFF)	I&M5 bis I&M15-Funktionen			derzeit nicht unterstützt
0×7000	Stationsparameter	WORD	r/w	Aktives Feldbus-Protokoll aktivieren.

11.5.2 Beschreibung der azyklischen I/O-Kanal-Nutzdaten

Tabelle 11-6:
I/O-Kanal-
Nutzdaten

Index (dez.)	Name	Daten-typ	r/w	Bemerkung
1	Stations-Parameter	spezifisch	r/w	Parameter der Station
2	Stations-Typ	ENUM UINT8	r	Angabe des Stations-Typs
3	Stations-Version	UINT8	r	Firmware-Version der I/O-Kanäle
4	Stations-ID	DWORD	r	Identnummer der I/O
5 bis 9	reserviert			
10	Slave Controller Version	UINT8 array [8]	r	Versions-Nummer der Slave- Controller.
11 bis 18	reserviert			
19	Input-Daten	spezifisch	r	Inputdaten des jeweils referenzierten I/O-Kanals
20 bis 22	reserviert			
23	Output-Daten	spezifisch	r/w	Outputdaten des jeweils referenzierten I/O-Kanals

12 Anwendungsbeispiel: FGEN für PROFINET mit einer Siemens S7

12.1	Anwendungsbeispiel	12-2
12.1.1	Allgemeines	12-2
12.1.2	AllgemeinesBeispielnetzwerk	12-2
12.1.3	Neues Projekt im Simatic Manager	12-3
12.1.4	Einstellen der PG/PC-Schnittstelle	12-3
12.1.5	Einlesen der GSDML-Dateien	
12.1.6	Hinzufügen von PROFINET-Netzwerkteilnehmern	12-7
	- FGEN-Stationen hinzufügen und konfigurieren	
12.1.7	Scannen des Netzwerkes nach PROFINET-Teilnehmern	12-10
12.1.8	Namenszuweisung FGEN-Stationen	12-11
12.1.9	PROFINET-Nachbarschaftserkennung (LLDP)	12-12
	- Notwendige Einstellung des PROFINET-Controllers	12-12
	- Konfiguration der Nachbarschaftserkennung	12-13
12.1.10	Online Topologieerkennung	12-15
12.1.11	Fast Start-Up - Konfiguration der Feldbusknoten	12-16
	- Priorisierter Hochlauf - Aktivierung am PN-IO	12-16
	- Einstellung der Ethernet-Ports (Port 1 und Port 2)	12-17
12.1.12	Diagnose mit Step 7	
	– Diagnosemeldungen im Hardware-Konfigurator	12-18

12.1 Anwendungsbeispiel

12.1.1 Allgemeines

Um die Kopplung von FGEN-Modulen für PROFINET mit einer Siemens-Steuerung S7 zu konfigurieren, wird das Software-Paket "SIMATIC Manager", Version 5.5 der Firma Siemens verwendet.

12.1.2 Beispielnetzwerk

Siemens-Steuerung S7, CPU 315-2 PN/DP, 6ES7 315-2EH14-0AB0, V3.2 IP-Adresse 192.168.144.112

Siemens-Switch, 4-Port (2 RJ45, 2 LWL)

- Gerätename: SCALANCE-X202-2P IRT

- IP-Adresse: 192.168.144.166

ET200S, IM-151-3 PN

- Gerätename: ET200-S

- IP-Adresse: 192.168.144.188

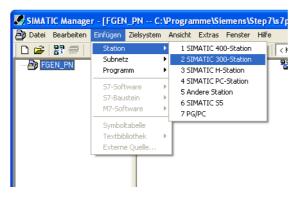
FGEN-IOM88-x001

- Gerätename: noch nicht zugewiesen

- IP-Adresse: noch nicht zugewiesen

FGEN-XSG16-x001

- Gerätename: noch nicht zugewiesen

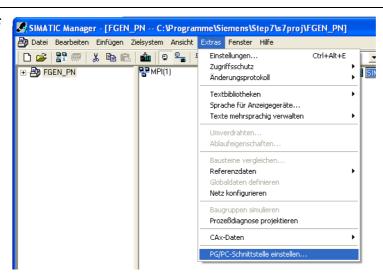

- IP-Adresse: noch nicht zugewiesen

12.1.3 Neues Projekt im Simatic Manager

- **1** Legen Sie im Simatic Manager über den Menüpunkt "Datei \rightarrow neu" ein neues Projekt an.
- **2** Fügen Sie dem Projekt über "Einfügen → Station…"eine Simatic-Station hinzu. In diesem Beispiel handelt es sich um eine "Simatic 300-Station".

Abbildung 12-1: Einfügen einer Simatic Station

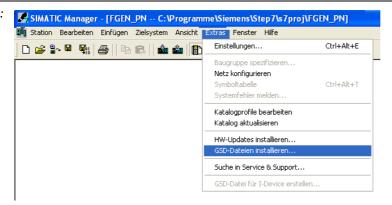
Die Konfiguration des PROFINET-Netzwerkes erfolgt anschließend im Hardware-Konfigurator der Software.


12.1.4 Einstellen der PG/PC-Schnittstelle

Um die Kommunikation zwischen der Steuerung und Ihrem PG/PC über Ethernet aufbauen zu können, muss die entsprechende Schnittstelle/Netzwerkkarte des PGs/PCs aktiviert werden.

Die Einstellung der Schnittstelle erfolgt über den Dialog "PG/PC-Schnittstelle einstellen".

Dieser kann in der Simatic Software beispielsweise über den Menüpunkt "Extras \rightarrow PG/PC Schnittstelle einstellen…"geöffnet werden, oder aber direkt über die Windows-Systemsteuerung Ihres PGs/PCs.


Abbildung 12-2: Menü "PG/PC Schnittstelle einstellen"

12.1.5 Einlesen der GSDML-Dateien

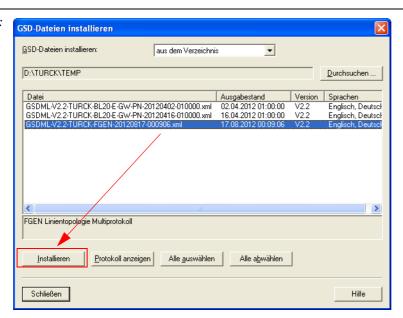
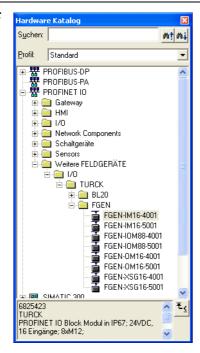

1 Im Hardware-Konfigurator "HW Konfig" öffnen Sie "Extras → GSD-Dateien installieren…" den Dialog zum Installieren neuer GSD-Dateien.

Abbildung 12-3: GSD-Datei installieren

2 Definieren Sie über "Durchsuchen" den Ablageort der TURCK-GSDML-Dateien, installieren Sie diese und fügen Sie so die FGEN-Geräte zum Hardware-Katalog hinzu.


Abbildung 12-4: GSDML-Datei installieren

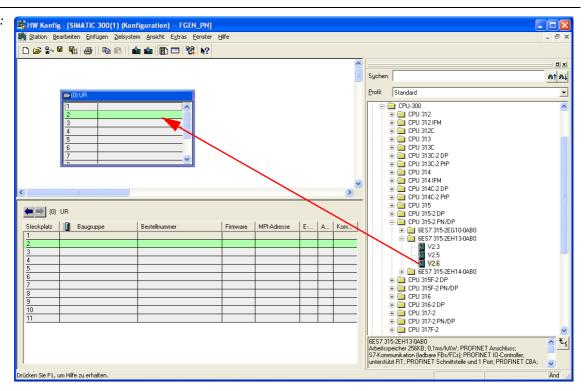

Die FGEN-Stationen erscheinen unter "PROFINET IO \rightarrow Weitere Feldgeräte \rightarrow I/O \rightarrow TURCK".

Abbildung 12-5: FGEN im Hardware-Katalog

- **3** Wählen Sie nun aus dem Hardware-Katalog zunächst die Profilschiene "RACK-300" für die Siemens CPU aus und ziehen Sie sie in das Netzwerk-Fenster.
- **4** Wählen Sie nun Siemens CPU aus dem Hardware-Katalog aus. In diesem Beispiel handelt es sich um die CPU 315-2 PN/DP, Ausgabestand 6ES7 315-2EH14-0AB0 (V 3.2).

Abbildung 12-6: Auswahl der CPU

5 Im folgenden Fenster "Eigenschaften Ethernet Schnittstelle" geben Sie die IP-Adresse und die Subnetzmaske für die S7 CPU an und fügen Sie das Subnetz über die Schaltfläche "Neu…"hinzu.

Abbildung 12-7: Eigenschaften Ethernet Schnittstelle

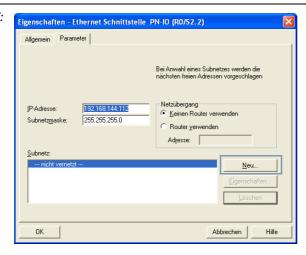
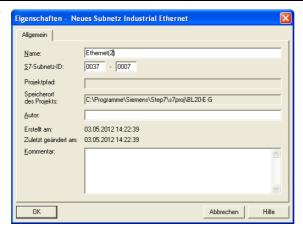



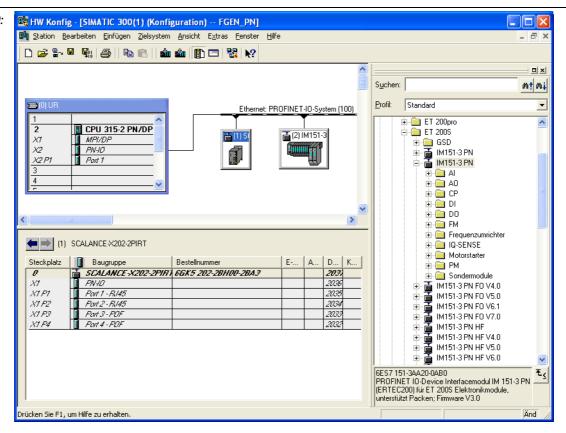
Abbildung 12-8: Neues Ethernet Subnetz einfügen

12.1.6 Hinzufügen von PROFINET-Netzwerkteilnehmern

Die Teilnehmer des Beispielnetzwerkes (siehe Seite 12-2) werden wie folgt zum PROFINET hinzugefügt:

Siemens-Switch

Gerätename: SCALANCE-X202-2P

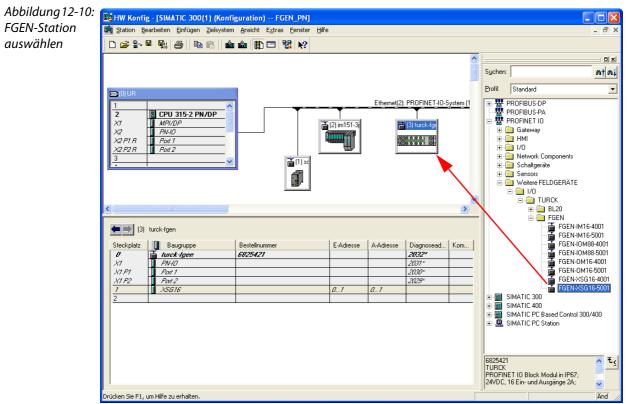

IP-Adresse: 192.168.144.166

ET200S

- Gerätename: ET200-S

IP-Adresse: 192.168.144.188

Abbildung 12-9: Netzwerk-Teilnehmer hinzufügen

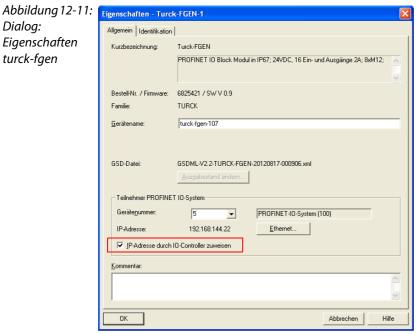


FGEN-Stationen hinzufügen und konfigurieren

Nun werden die FGEN-Stationen aus dem Hardware-Katalog zur Konfiguration hinzugefügt.

- FGEN-IOM88-x001,
 - Gerätename: noch nicht zugewiesen
 - IP-Adresse: noch nicht zugewiesen
- FGEN-XSG16-x001,
 - Gerätename: noch nicht zugewiesen
 - IP-Adresse: noch nicht zugewiesen
- Wählen Sie die Station aus unter "PROFINET IO \rightarrow Weitere Feldgeräte \rightarrow I/O \rightarrow TURCK \rightarrow FGEN" und ziehen Sie es in das Ethernet-Netzwerk.

auswählen



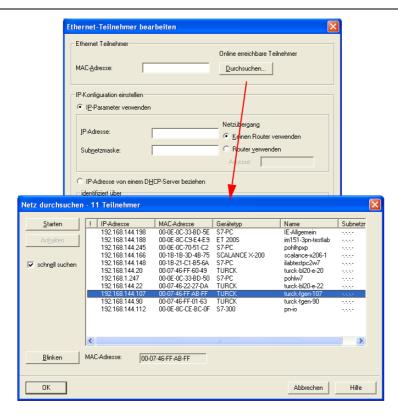
2 Öffnen Sie per Doppelklick auf das Symbol der Station das Fenster "Eigenschaften - turck-fgen".

3 Geben Sie hier jeweils den gewünschten Gerätenamen der Stationen ein.

Dialog: Eigenschaften turck-fgen

Hinweis

Im PROFINET-System wird das angeschlossene Gerät nicht anhand seiner IP-Adresse identifiziert, sondern anhand seines Gerätenamens erkannt und angesprochen. Das Zuweisen eines Gerätenamens für ein konkretes IO-Device ist somit mit dem Einstellen der PROFIBUS-Adresse bei einem DP-Slave zu vergleichen.


12.1.7 Scannen des Netzwerkes nach PROFINET-Teilnehmern

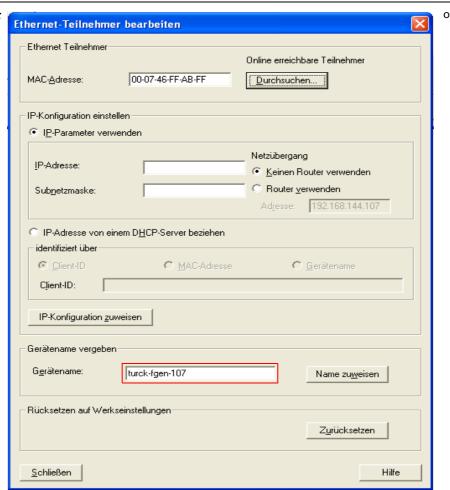
Der Simatic Hardware-Konfigurator bietet die Möglichkeit, das PROFINET-Netzwerk über einen Broadcast-Befehl nach aktiven PROFINET-Teilnehmern zu durchsuchen. Diese werden anhand ihrer MAC-ID identifiziert.

- **1** Wählen Sie dazu unter "Zielsystem \rightarrow Ethernet \rightarrow Ethernet-Teilnehmer bearbeiten...".
- 2 Im Dialog "Ethernet-Teilnehmer bearbeiten" suchen Sie nun über die Schaltfläche "Durchsuchen" im Bereich "Ethernet-Teilnehmer" alle online erreichbaren Netzwerk-Teilnehmer anhand ihrer MAC-ID.

Alle im Netz befindlichen PROFINET-Teilnehmer melden sich mit ihrer MAC-ID, ihrer IP-Adresse, soweit vorhanden, und ihrem aktuell im Gerät gespeicherten Gerätenamen.

Abbildung 12-12: Ethernet-Teilnehmer bearbeiten

Wählen Sie einen Knoten aus und schließen Sie anschließend den Dialog mit "OK". Die Daten des ausgewählten Knotens werden in den Dialog "Ethernet-Teilnehmer bearbeiten" übernommen.


12.1.8 Namenszuweisung FGEN-Stationen

Nun können, wenn nötig, applikationsbedingte Anpassungen der IP-Konfiguration und des Gerätenamens vorgenommen werden.

Hier in diesem Beispiel werden den Modulen folgende Eigenschaften zugewiesen:

- FGEN-IOM88-x001
 - Gerätename: TURCK-FGEN-90
- FGEN-XSG16-x001
 - Gerätename: TURCK-FGEN-107

Abbildung 12-13: Anpassen der Ethernet-Teilnehmer-Konfiguration

Hinweis

An dieser Stelle ist auch die Zuweisung eines applikationsspezifischen Gerätenamens für die gefundenen Geräte möglich.

Dabei ist unbedingt darauf zu achten, dass der hier vergebene Gerätename und der Gerätename, der dem Teilnehmer im Eigenschaften-Dialog (siehe Abbildung 12-11: Dialog: Eigenschaften turck-fgen) zugewiesen wurde/wird, übereinstimmen.

Ist dies nicht der Fall, kann die CPU den Teilnehmer nicht eindeutig identifizieren!

12.1.9 PROFINET-Nachbarschaftserkennung (LLDP)

Die FGEN-Stationen unterstützen das LLDP-Protokoll (Link Layer Discovery Protocol).

Bei einem Geräteaustausch ist für ein neues Gerät gleichen Typs mit identischer Prozessdatenbreite dank der Nachbarschaftserkennung keine vorherige PROFINET-Namenszuweisung (siehe Namenszuweisung FGEN-Stationen (Seite 12-11)) notwendig. Der Gerätename und die IP-Adresse werden dem neuen Gerät von seinem zuvor konfigurierten Nachbargerät zugewiesen (siehe Konfiguration der Nachbarschaftserkennung (Seite 12-13)).

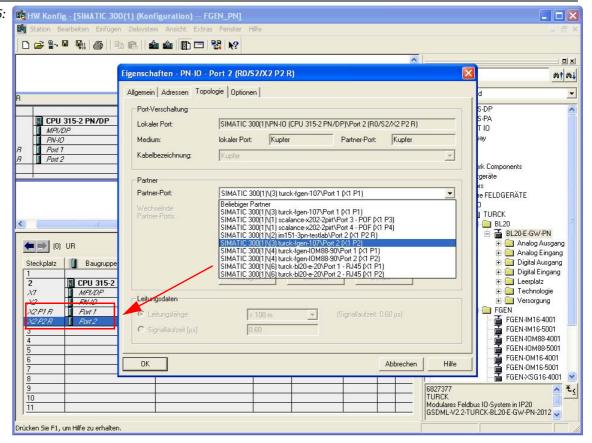
Notwendige Einstellung des PROFINET-Controllers

Die Nachbarschaftserkennung kann ohne Verwendung eines PGs oder Wechselmediums nur dann erfolgen, wenn bei den Eigenschaften des PROFINET-Controllers das Kontrollkästchen "Gerätetausch ohne Wechselmedium unterstützen" aktiviert ist.

Abbildung 12-14: Einstellungen des PROFINET-Controllers

Beim Gerätetausch erhält ein neues Gerät den Gerätenamen so nicht vom Wechselmedium oder vom PG, sondern vom IO-Controller selbst.

Bestimmt wird der Gerätename anhand der projektierten Port-Verschaltungen des IO-Device in der Topologiedefinition.

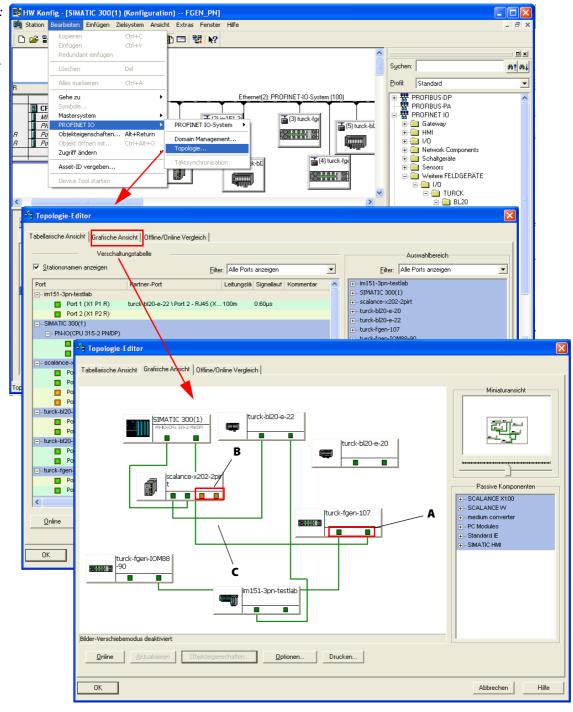

Konfiguration der Nachbarschaftserkennung

Jedem Gerät kann für jeden verfügbaren Ethernet-Port ein Nachbar-Port zugewiesen werden. Dieser dient im Falle des Geräteaustauschs dann dazu, dem neuen Gerät IP-Adresse und Gerätenamen zuzuweisen.

Dies Zuweisung des Partner-Ports geschieht entweder in den Eigenschaften der Ethernet-Ports der Geräte, oder wird direkt über den PROFINET-Topologie-Editor gemacht (siehe Seite 12-14).

Partner Port-Zuweisung über Port-Konfiguration:
 Auswahl des Ports des Nachbargerätes, mit dem dieser Port physikalisch verbunden ist.

Abbildung 12-15: Partner Port -Zuweisung (Beispiel)

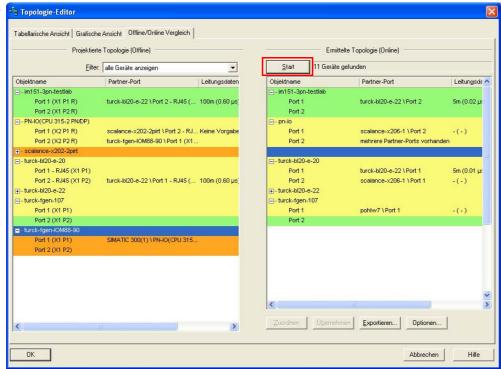


 Nachbarschafts-Zuweisung über den Topologie-Editor:
 Die Zuweisung der Nachbargeräte erfolgt entweder in der tabellarischen oder der grafischen Ansicht.

Die Kupfer-Ports der Geräte sind grün dargestellt, die LWL-Ports orange.

Abbildung 12-16: PROFINET Topologie-Editor

- A Bsp: Kupfer-Port
- **B** LWL-Ports
- **C** Bsp: Kupfer-Verbindung



12.1.10 Online Topologieerkennung

Die Step7-Software bietet die Möglichkeit des Offline/Online-Abgleichs der konfigurierten Topologie mit der tatsächlich physikalisch vorliegenden.

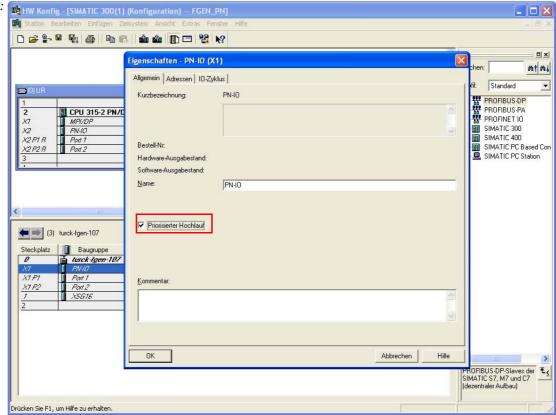
1 Sie starten den "Offline/Online Vergleich" im Topologie-Editor über die Schaltfläche "Start" in der entsprechenden Registerkarte.

Abbildung 12-17: PROFINET Topologie-Editor Offline/Online Vergleich

12.1.11 Fast Start-Up - Konfiguration der Feldbusknoten

Im folgenden Beispiel werden die FGEN-Stationen des Anwendungsbeispiels für den FSU-Betrieb konfiguriert:

- Station 1: turck-fgen-107
- Station 2: turck-fgen-90


Priorisierter Hochlauf - Aktivierung am PN-IO

FSU wird am PN-IO-Slot der FSU-fähigen Knoten im Hardware-Konfigurator (HW-Konfig) der Simatic Software aktiviert.

Hier im Beispiel werden die PN-IO-Slots der beiden FGEN-Stationen entsprechend eingestellt.

Die folgende Darstellung zeigt die Aktivierung des priorisierten Hochlaufs am Beispiel des Knotens turck-fgen-107:

Abbildung 12-18: Priorisierter Hochlauf, Einstellungen am PN-IO-Slot

Hinweis

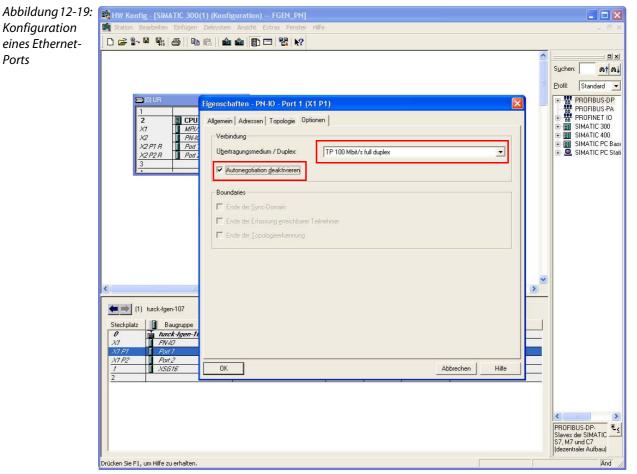
Diese Einstellung ist auch am Nachbarknoten turck-fgen-90 vorzunehmen.

Einstellung der Ethernet-Ports (Port 1 und Port 2)

Um einen schnellen Hochlauf der Geräte zu ermöglichen, müssen die Ethernet-Ports der Geräte wie folgt konfiguriert werden:

Auto Negotiation: deaktiviert

Übertragungsmedium / Duplex: Einstellung auf einen festen Wert



Hinweis

Bitte achten Sie bei der Konfiguration der Ethernet-Ports darauf, dass die Einstellungen für die Ports benachbarter Geräte identisch sind.

Auch hier wird die Einstellung der Ports nur am Beispiel des Port 1 der Station turck-fgen-107 gezeigt.

Konfiguration eines Ethernet-Ports

Diese Einstellungen sind auch am benachbarten Port des Nachbarknoten turck-fgen-90 vorzunehmen.

12.1.12 Diagnose mit Step 7

Diagnosemeldungen im Hardware-Konfigurator

Die FGEN-Stationen für PROFINET zeigt im Hardware-Konfigurator der Step 7-Software kanalspezifische Stations-Diagnosemeldungen an.

Darüber hinaus ist für jede kanalspezifische Diagnosemeldung ein spezieller Hilfetext hinterlegt, der den Fehler genauer definiert:

Abbildung 12-20: Baugruppenzustand - turck-fgen Diagnose Pfad: FGEN_PN\SIMATIC 300(1)\CPU 315-2 PN/DP Betriebszustand der CPU: 🕦 RUN A kanalspezifi-Status: 🔀 Fehler sche Stations-Netzanschluß Statistik Identifikation diagnosen Allgemein IO-Device Diagnose Kommunikationsdiagnose Interface **B** herstellerspezifi-10-Controller: pn-io sche Hilfetexte Hans Turck GmbH & Co.KG Gerätekennung: 16# 6001 Herstellerbezeichnung: Hex-Darstellung.. Standarddiagnose: Kanalspezifische Diagnose: Steckplatz Kanal-Nr. Fehler Hilfe zur Kanalspezifischen Diagnose Diagnosezeile: Ueberlast Sensorversorgung ilfe Das Modul hat einen zu grossen Strom an der Sensorversorgung festgestellt. Schließen

13 Richtlinien für die elektrische Installation

13.1	Allgemeine Hinweise	13-2
13.1.1	Übergreifendes	13-2
13.1.2	Leitungsführung	13-2
	- Leitungsführung innerhalb und außerhalb von Schränken	13-2
	– Leitungsführung außerhalb von Gebäuden	13-3
13.1.3	Blitzschutz	13-3
13.1.4	Übertragungsmedien	13-3
13.2	Potenzialverhältnisse	13-4
13.3	Elektromagnetische Verträglichkeit (EMV)	
13.3.1	Sicherstellung der EMV	13-5
13.3.2	Massung inaktiver MetallteilePE-Anschluss	13-5
13.3.3	PE-Anschluss	13-5
13.4	Schirmung von Leitungen	13-6
13.5	Potenzialausgleich	
13.5.1	Beschaltung von Induktivitäten	13-7
13.5.2	Schutz gegen elektrostatische Entladung	

13.1 Allgemeine Hinweise

13.1.1 Übergreifendes

Leitungen sollten in Gruppen eingeteilt werden, z. B. Signalleitungen, Datenleitungen, Starkstromleitungen, Stromversorgungsleitungen.

Starkstromleitungen und Signal- bzw. Datenleitungen sollten immer in getrennten Kanälen oder Bündeln verlegt werden. Signal-bzw. Datenleitungen müssen immer so eng wie möglich an Masseflächen (z. B. Tragholme, Schrankbleche usw.) geführt werden.

13.1.2 Leitungsführung

Eine ordnungsgemäße Leitungsführung verhindert bzw. unterdrückt eine gegenseitige Beeinflussung von parallel verlegten Leitungen.

Leitungsführung innerhalb und außerhalb von Schränken

Die Leitungen sollten in folgende Gruppen unterteilt werden, um eine EMV-gerechte Leitungsführung sicherzustellen:

Innerhalb der Gruppen können die verschiedenen Leitungsarten miteinander in Bündeln oder Kabelkanälen verlegt werden.

Gruppe 1:

- geschirmte Bus- und Datenleitungen
- geschirmte Analogleitungen
- ungeschirmte Leitungen für Gleichspannung ≤ 60 V
- ungeschirmte Leitungen für Wechselspannung ≤ 25 V

Gruppe 2:

- ungeschirmte Leitungen für Gleichspannung > 60 V und ≤ 400 V
- ungeschirmte Leitungen für Wechselspannung > 25 V und ≤ 400 V

Gruppe 3:

ungeschirmte Leitungen für Gleich- und Wechselspannung > 400 V

Die folgende Gruppenkombination kann nur in getrennten Bündeln oder Kabelkanälen (ohne Mindestabstand) verlegt werden:

Gruppe 1/Gruppe 2

Die Gruppenkombinationen

Gruppe 1/Gruppe 3; Gruppe 2/Gruppe 3

müssen in getrennten Kabelkanälen mit einem Mindestabstand von 10 cm verlegt werden. Dies gilt sowohl innerhalb von Gebäuden als auch innerhalb und außerhalb von Schaltschränken.

Leitungsführung außerhalb von Gebäuden

Außerhalb von Gebäuden sollten die Leitungen in möglichst geschlossenen (käfigförmigen) Kabelkanälen aus Metall geführt werden. Die Stoßstellen der Kabelträger müssen galvanisch miteinander verbunden und die Kabelträger geerdet werden.

Gefahr

Beachten Sie beim Verlegen von Leitungen außerhalb von Gebäuden unbedingt alle gültigen Richtlinien für den inneren und äußeren Blitzschutz und alle Erdungsvorschriften.

13.1.3 Blitzschutz

Die Leitungen müssen in beidseitig geerdeten Metallrohren oder betonierten Kabelkanälen mit durchgehender Bewehrung verlegt werden.

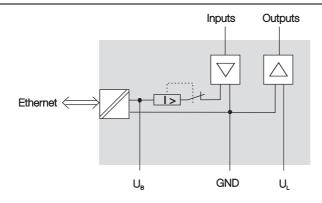
Signalleitungen müssen durch Varistoren oder edelgasgefüllte Überspannungsableiter gegen Überspannungen geschützt werden. Die Varistoren und Überspannungsableiter müssen an der Stelle installiert werden, an der die Leitung in das Gebäude eintritt.

13.1.4 Übertragungsmedien

Bei Ethernet kommen die verschiedensten Übertragungsmedien zum Einsatz.

- Koaxialkabel10Base2 (thin koax),10Base5 (thick koax, yellow cable)
- Lichtwellenleiter (10BaseF)
- verdrillte Zweidrahtleitung (10BaseT) mit Schirmung (STP) oder ohne Schirmung (UTP).

Hinweis


TURCK bietet eine Vielzahl von Kabeltypen für Feldbusleitungen als Meterware oder vorkonfektioniert mit verschiedensten Anschlusssteckern.

Die Bestellinformationen für die verfügbaren Kabletypen entnehmen Sie bitte dem Feldbustechnik-Katalog (D301052).

13.2 Potenzialverhältnisse

Die Potenzialverhältnisse eines mit FGEN-Stationen realisierten Ethernet-Systems sind im folgenden Blockschaltbild dargestellt:

Abbildung 13-1: Blockschaltbild einer FGEN-Station

13.3 Elektromagnetische Verträglichkeit (EMV)

Die TURCK-Produkte werden den Anforderungen an die EMV voll gerecht. Vor der Installation ist dennoch eine EMV-Planung erforderlich.

Hierbei sollten alle potenziellen Störquellen wie galvanische, induktive und kapazitive Kopplungen sowie Strahlungskopplungen berücksichtigt werden.

13.3.1 Sicherstellung der EMV

Die EMV der Stationen ist gesichert, wenn beim Aufbau folgende Grundregeln eingehalten werden:

- Ordnungsgemäße und flächenhafte Massung der inaktiven Metallteile
- Korrekte Schirmung der Leitungen und Geräte. Die Erdungslasche an den Ethernet-Buchsen ist möglichst impedanzarm mit Masse zu verbinden
- Ordnungsgemäße Leitungsführung Verdrahtung
- Schaffung eines einheitlichen Bezugspotenzials und Erdung aller elektrischen Betriebsmittel
- Spezielle EMV-Maßnahmen für besondere Anwendungen

13.3.2 Massung inaktiver Metallteile

Alle inaktiven Metallteile (wie z. B. Schaltschränke, Schaltschranktüren, Tragholme, Montageplatten, Hutschienen etc.) müssen großflächig und impedanzarm miteinander verbunden werden (Massung). Somit ist eine einheitliche Bezugspotenzialfläche für alle Elemente der Steuerung gesichert. Der Einfluss eingekoppelter Störungen verringert sich.

- Bei lackierten, eloxierten oder isolierten Metallteilen muss im Bereich von Schraubverbindungen die isolierende Schicht entfernt werden. Schützen Sie die Verbindungsstelle vor Korrosion.
- Bewegliche Masseteile (Schranktüren, getrennte Montageplatte usw.) müssen durch kurze Massebänder mit großer Oberfläche verbunden werden.
- Vermeiden Sie möglichst den Einsatz von Aluminiumteilen, da Aluminium leicht oxidiert und dann für eine Massung ungeeignet ist.

Gefahr

Die Masse darf niemals – auch nicht im Fehlerfall – eine gefährliche Berührungsspannung annehmen. Daher muss die Masse mit einem Schutzleiter verbunden werden.

13.3.3 PE-Anschluss

Die Masse und der PE-Anschluss (Schutzerde) müssen zentral miteinander verbunden werden.

13.4 Schirmung von Leitungen

Ein Leitungsschirm hat die Aufgabe, die Einkopplung von Störspannungen sowie die Auskopplung von Störfeldern bei Leitungen zu vermeiden. Daher sollten nur geschirmte Leitungen mit Schirmgeflechten aus gut leitendem Material (Kupfer oder Aluminium) und einer Überdeckung von mindestens 80 % verwendet werden.

Die Leitungsschirme sollten grundsätzlich (wenn nicht in Ausnahmen anders festgelegt, z. B. bei hochohmigen, symmetrischen, analogen Signalleitungen) beidseitig an das jeweilige lokale Bezugspotenzial angeschlossen werden. Nur dann kann der Leitungsschirm seine beste Schirmwirkung gegen elektrische und magnetische Felder erzielen.

Ein nur einseitig aufgelegter Schirm bewirkt lediglich eine Entkopplung gegen elektrische Felder.

Achtung

Beim Aufbau ist darauf zu achten, dass...

- der Schirm direkt beim Systemeintritt aufgelegt wird,
- die Schirmauflage auf der Schirmschiene niederimpedant erfolgt,
- die freien Leitungsenden so kurz wie möglich zu halten sind,
- der Leitungsschirm nicht als Potenzialausgleich verwendet wird.

Bei stationärem Betrieb sollte das geschirmte Datenkabel abisoliert auf die Schirmschiene aufgelegt werden. Der Anschluss und die Befestigung des Schirms sollten dabei mit Klemmbügeln aus Metall erfolgen. Die Schellen müssen den Schirm großflächig umschließen und kontaktieren. Die Schirmschiene muss niederimpedant (z. B. Befestigungspunkte im Abstand von 10 bis 20 cm) mit der Bezugspotenzialfläche verbunden sein.

Der Leitungsschirm sollte nicht durchtrennt, sondern innerhalb des Systems (z. B. Schaltschrank) bis zur Anschaltung weitergeführt werden.

Hinweis

Kann aus schaltungstechnischen oder gerätespezifischen Gründen die Schirmauflage nur einseitig erfolgen, ist es möglich, die zweite Leitungsschirmseite über einen Kondensator (kurze Anschlüsse) an das lokale Bezugspotenzial zu führen. Gegebenenfalls kann zusätzlich ein Varistor dem Kondensator parallel geschaltet werden, um einen Kondensatordurchschlag bei auftretenden Störimpulsen zu verhindern.

Eine weitere Möglichkeit ist ein doppelter Schirm (galvanisch voneinander getrennt), wobei der innere Schirm einseitig, der äußere beidseitig angeschlossen wird.

13.5 Potenzialausgleich

Potenzialunterschiede können bei räumlich voneinander entfernten Anlageteilen auftreten, wenn diese

- von unterschiedlichen Versorgungen gespeist werden.
- beidseitig aufgelegte Leitungsschirme besitzen, die an unterschiedlichen Anlagenteilen geerdet werden.

Zum Potenzialausgleich muss eine Potenzialausgleichsleitung gelegt werden.

Gefahr

Der Schirm darf nicht als Potenzialausgleich dienen!

Abbildung 13-2: Potenzialausgleich

Eine Potenzialausgleichsleitung muss folgende Merkmale aufweisen:

- Kleine Impedanz. Bei beidseitig aufgelegten Leitungsschirmen muss die Impedanz der Ausgleichsleitung erheblich kleiner sein als die der Schirmverbindung (höchstens 10% der Impedanz der Schirmverbindung).
- Die Ausgleichsleitung muss bei einer Länge unter 200 m mindestens einen Querschnitt von 16 mm² aufweisen. Beträgt die Leitungslänge mehr als 200 m, so ist ein Querschnitt von mindestens 25 mm² erforderlich.
- Die Ausgleichsleitung muss aus Kupfer oder verzinktem Stahl bestehen.
- Sie muss großflächig mit dem Schutzleiter bzw. der Erdung verbunden und gegen Korrosion geschützt werden.
- Ausgleichsleitung und Signalleitung sollten möglichst dicht nebeneinander verlegt werden, d. h. die eingeschlossene Fläche sollte möglichst klein sein.

13.5.1 Beschaltung von Induktivitäten

Bei induktiven Lasten empfiehlt sich eine Schutzbeschaltung direkt an der Last.

13.5.2 Schutz gegen elektrostatische Entladung

Achtung

Im zerlegten Zustand sind Elektronik- und Basismodule ESD gefährdet. Vermeiden Sie die Berührung der Busanschlüsse mit bloßen Händen, da dies zu Schäden auf Grund elektrostatischer Entladung führen könnte.

Richtlinien für die elektrische Installation

14 Anhang

14.1	Änderung der IP-Adresse eines PCs/einer Netzwerkkarte	. 14-2
14.1.1 14.1.2	Änderung der IP-Adresse bei Windows	
14.2	Deaktivieren/ anpassen der Firewall bei Windows	. 14-5
14.2.1	Adressierung über DHCP	14-7

14.1 Änderung der IP-Adresse eines PCs/einer Netzwerkkarte

14.1.1 Änderung der IP-Adresse bei Windows

Die IP-Adresse wird in der Systemsteuerung geändert:

- in Windows 2000/ Windows XP unter "Netzwerkverbindungen",
- in Windows 7 unter "Netzwerk- und Freigabecenter".

Abbildung 14-1: Ändern der IP-Adresse in Windows 2000/ XP

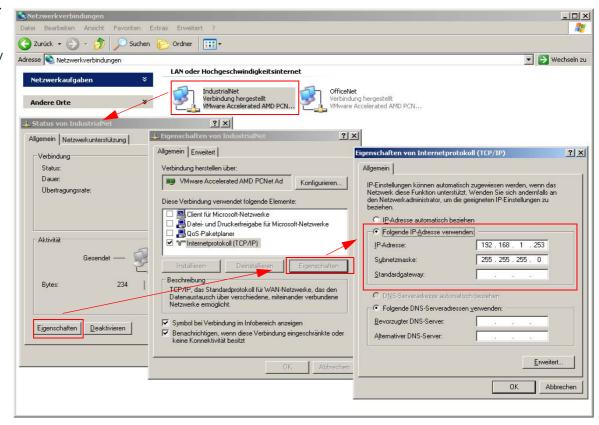
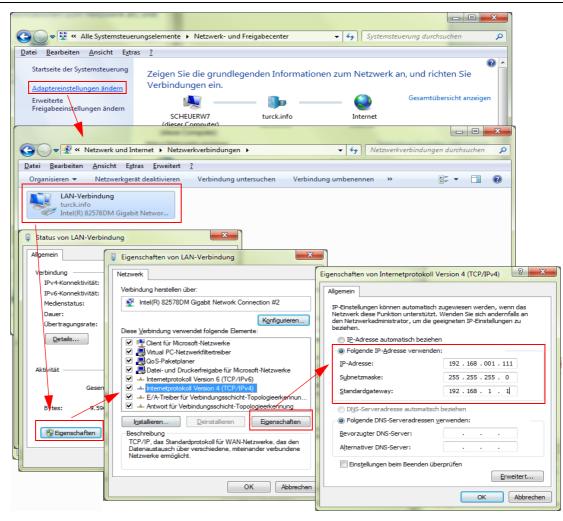
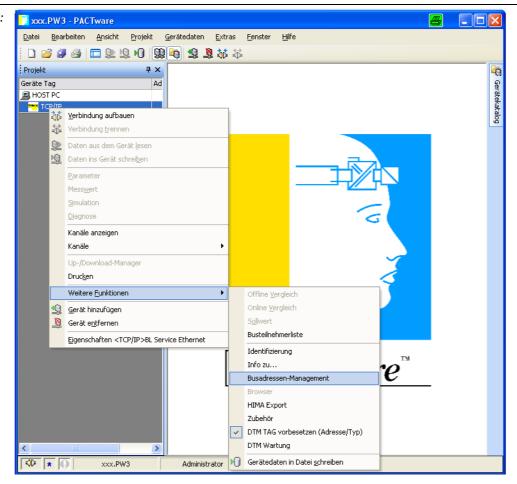



Abbildung 14-2: Ändern der IP-Adresse in Windows 7



14.1.2 Änderung der IP-Adresse über PACTware™ (I/O-ASSISTANT V3)

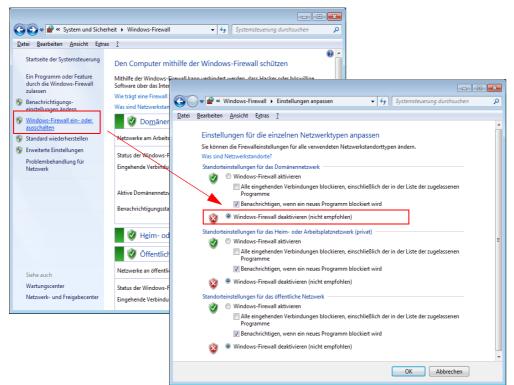
Mit Hilfe des DTMs "Busadressen-Management" im I/O-ASSISTANT V3 (Zugriff über: "Weitere Funktionen \rightarrow Busadressen-Management") können Sie das gesamte Ethernet-Netzwerk nach TURCK-Ethernet-Teilnehmern durchsuchen und deren IP-Adressen sowie die Subnetzmaske applikationsbedingt anpassen .

Nähere Informationen zu diesem Thema finden sie unter Adressierung über I/O-ASSISTANT 3 (FDT/DTM) (Seite 4-12)).

Abbildung 14-3: Busadressen-Management

14.2 Deaktivieren/ anpassen der Firewall bei Windows

Bei der Verwendung der Windows Firewall kann es bei der Änderung der IP-Adressen über den I/O-ASSISTANT zu Problemen kommen. In diesem Fall können Sie die systeminterne Windows Firewall vollständig deaktivieren bzw. anpassen.


Deaktivieren der Firewall

Öffnen Sie dazu über die Systemsteuerung Ihres PCs das Fenster "Windows Firewall". Deaktivieren Sie die Firewall wie folgt:

Abbildung 14-4: Deaktivieren der Firewall bei Windows 2000/ XP

Abbildung 14-5: Deaktivieren der Firewall bei Windows 7

Anpassen der Firewall

In diesem Fall bleibt die Firewall aktiv, der Punkt "Keine Ausnahmen zulassen" ist deaktiviert:

Abbildung 14-6: Anpassen der Firewall bei Windows 2000/ XP

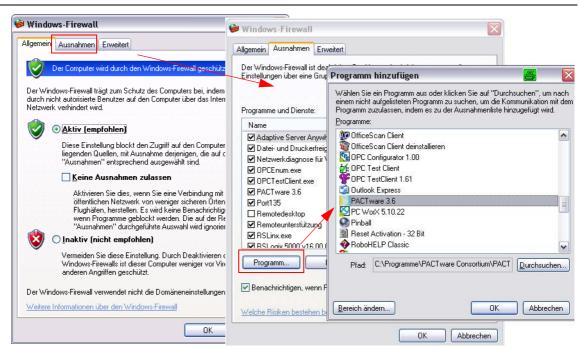
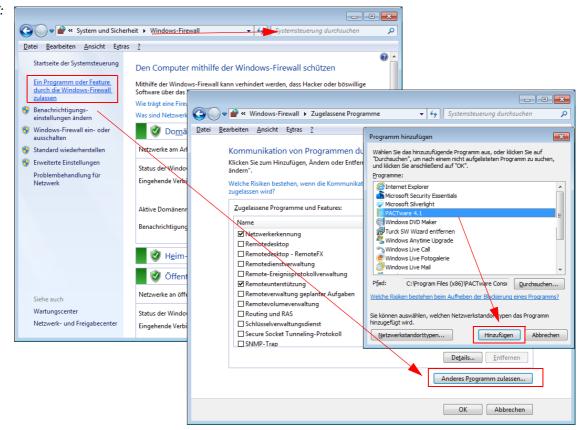
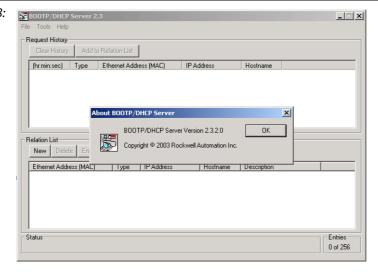



Abbildung 14-7: Anpassen der Firewall bei Windows 7

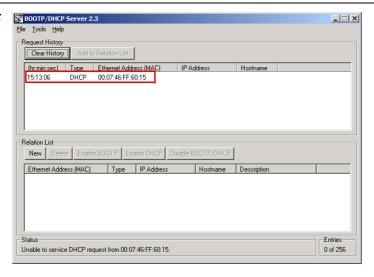


14.2.1 Adressierung über DHCP

In diesem Anwendungsbeispiel wird die IP-Adresse mittels der Software "BootP/DHCP-Server" Version 2.3.2.0 von Rockwell Automation vergeben.

Abbildung 14-8: BootP-Server von Rockwell Automation

Adressen von 1 bis 254 können vergeben werden. Die Adressen 0 und 255 sind für Braodcast-Meldungen im Subnetz vergeben.



Hinweis

Die Drehkodierschalter am Gerät müssen auf "300" = BootP, "400" = DHCP oder "600" = PGM-DHCP eingestellt sein, damit der BootP/DHCP-Modus aktiv ist. Siehe hierzu auch Kapitel 3, Abschnitt Adressierung (Seite 3-9).

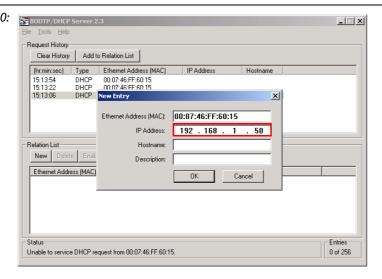

Nachdem das Gerät mit dem Netztwerk verbunden wurde, sendet es unter seiner MAC-ID DHCP-Requests an den Server.

Abbildung 14-9: DHCP-Request des Gerätes

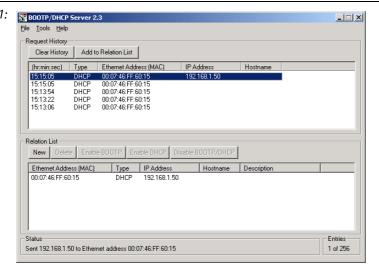

Ein Doppelklick auf den Reuest-Eintrag öffnet den "New Entry"-Dialog, in dem der MAC-ID eine neue IP-Adresse zugewiesen werden kann.

Abbildung14-10: Setzen der IP-Adresse über DHCP

Der BootP/DHCP-Server sendet die IP-Adresse über BootP/DHCP zum Gerät und nach wenigen Sekunden antwortet das Gerät mit der neuen IP-Adresse.

Abbildung14-11: Gesetzte IP-Adresse

Achtung

Wird der BootP/DHCP-Server heruntergefahren, verliert das Gerät im Falle eines Spannungsresets die IP-Adresse.

15 Glossar

Abschlusswiderstand

Widerstand am Anfang und am Ende einer Bus-Leitung, der störende Signalreflexionen verhindert und zur Leitungsanpassung bei Busleitungen dient. Abschlusswiderstände müssen immer die letzte Einheit am Ende eines Bussegments sein.

Acknowledge

Quittung des Empfängers für ein empfangenes Signal.

Adresse

Nummer zur Kennzeichnung z. B. eines Speicherplatzes, eines Systems oder eines Moduls innerhalb eines Netzwerks.

Adressierung

Zuweisung bzw. Einstellung einer Adresse, z. B. für ein Modul in einem Netzwerk.

aktives Metallteil

Leiter oder leitfähiges Bauteil, das im Betrieb unter Spannung steht.

analog

Wert – z. B. einer Spannung – der sich stufenlos proportional verhält. Bei analogen Signalen kann der Wert des Signals innerhalb bestimmter Grenzen jeden beliebigen Wert annehmen.

AR

Abk. für engl. "Application Relation". Logische Applikationsbeziehung zwischen zwei Teilnehmern, die eine oder mehrere Kommunikationsbeziehungen umfassen kann.

ARP

Dient zur eindeutigen Zuordnung von weltweit vergebenen Hardware-Adressen (MAC-IDs) zur IP-Adresse der Netzwerk-Teilnehmer über interne Tabellen.

Automatisierungsgerät

Gerät zur Steuerung mit Eingängen und Ausgängen, das an einen technischen Prozess angeschlossen wird. Speicherprogrammierbare Steuerungen (SPS) sind eine spezielle Gruppe von Automatisierungsgeräten.

Baud

Maßeinheit für die Übertragungsgeschwindigkeit von Daten. Ein Baud entspricht einem Schritt pro Sekunde. Wird pro Schritt ein Bit übertragen, ist die Baudrate identisch mit der Übertragungsrate in Bit pro Sekunde.

Baud-Rate

Siehe "Baud".

Betriebsmittel, elektrische

Alle Gegenstände, die für die Erzeugung, Umwandlung, Übertragung, Verteilung und Anwendung von elektrischer Energie eingesetzt werden, z. B. Leitungen, Kabel, Maschinen, Steuergeräte.

Bezugserde

Potenzial des Erdreichs im Bereich von Erdungseinrichtungen. Kann im Gegensatz zur "Erde", deren Potenzial immer Null ist, ein von Null verschiedenes Potenzial haben.

Bezugspotenzial

 $Potenzial, von dem \ aus \ die \ Spannungen \ aller \ angeschlossen en \ Stromkreise \ betrachtet \ und/oder \ gemessen \ werden.$

bidirektional

In beiden Richtungen arbeitend.

Blitzschutz

Alle Maßnahmen, die dazu dienen, ein System vor Schäden durch Überspan-nungen zu schützen, die von Blitzen hervorgerufen werden können.

BootP

Kurz für Bootstrap-Protokoll. Das Bootstrap-Protokoll dient zur zur Einstellung der Netzwerkadresse von Netzwerkknoten über einen Bootserver .

Bus

Sammelleitungssystem für den Datenaustausch, z. B. zwischen CPU, Speicher und I/O-Ebene. Ein Bus kann aus mehreren parallelen Leitungen für Datenübertragung, Adressierung, Steuerung und Stromversorgung bestehen.

Buslinie

Kleinste mit einem Bus verbundene Einheit; bestehend aus einer SPS, einem Kopplungselement für Stationen an den Bus und einem Modul.

Bussystem

Die Gesamtheit aller Einheiten, die über einen Bus miteinander kommunizieren.

Buszykluszeit

Zeitintervall, in dem ein Master alle Slaves bzw. Teilnehmer in einem Bussystem bedient, d. h. deren Ausgänge schreibt und Eingänge liest.

C

CPU

Abk. für engl. "Central Processing Unit". Zentrale Einheit zur Datenverarbeitung, das Kernstück eines Rechners.

D

DHCP

Client-Server-Protokoll, das den Aufwand für die Vergabe von IP-Adressen und sonstigen Parametern reduziert. Dient zur dynamischen und automatischen Endgeräte-Konfiguration.

digital

Wert – z. B. einer Spannung – der innerhalb einer endlichen Menge nur bestimmte Zustände annehmen kann, meist definiert als 0 und 1.

DIN

Abk. für "Deutsches Institut für Normung e.V".

EIA

Abk. für engl. "Electronic Industries Association". Vereinigung von Unternehmender elektronischen Industrie in den USA.

EMV

Abk. für "Elektromagnetische Verträglichkeit". Die Fähigkeit eines elektrischen Betriebsmittels, in einer bestimmten Umgebung fehlerfrei zu funktionieren, ohne negativen Einfluss auf die Umgebung zu haben.

Erde

In der Elektrotechnik die Bezeichnung für leitfähiges Erdreich, dessen elektrisches Potenzial an jedem Punkt gleich Null ist. In der Umgebung von Erdungseinrichtungen kann das elektrische Potenzial der Erde ungleich Null sein, dann spricht man von "Bezugserde".

erden

Verbinden eines elektrisch leitfähigen Teils über eine Erdungseinrichtung mit dem Erder.

Erder

Eine oder mehrere Komponenten, die mit dem Erdreich direkten und guten Kontakt haben.

ESD

Abkürzung für engl. "Electro Static Discharge", elektrostatische Entladung.

F

Feldbus

Datennetz auf der Sensor-/Aktorebene. Ein Feldbus verbindet die Geräte in der Feldebene. Kennzeichnend für einen Feldbus sind hohe Übertragungssicherheit und Echtzeitverhalten.

Feldeinspeisung

Einspeisung der Spannung zur Versorgung der Feldgeräte sowie der Signalspannung.

Force Mode

Modus der Software, in dem das "erzwungene Setzen" bestimmter Variablen an Ein- und Ausgabemodulen zur Nachbildung bestimmter Anlagenzustände möglich ist.

Function Code

Werden bei Modbus in das Datentelegramm eingebunden. Enthalten u.a. Befehle zum Lesen und Schreiben von Ein- bzw. Ausgangsdaten.

G

galvanische Kopplung

Eine galvanische Kopplung tritt generell auf, wenn zwei Stromkreise eine gemeinsame Leitung benutzen. Typische Störquellen sind z. B. anlaufende Motoren, statische Entladungen, getaktete Geräte und ein unterschiedliches Potenzial der Gehäuse von Komponenten und der gemeinsamen Stromversorgung.

GND

Abk. für engl. "GROUND", dt. Masse (Potenzial 0).

н

hexadezimal

Zahlensystem mit der Basis 16. Gezählt wird von 0 bis 9 und weiter mit den Buchstaben A, B, C, D, E und F.

Hysterese

Ein Geber kann an einer bestimmten Stelle stehen bleiben und dann um diese Position "pendeln". Dieser Zustand führt dazu, dass der Zählerstand um einen bestimmten Wert schwankt. Liegt nun in diesem Schwankungsbereich ein Vergleichswert, würde der zugehörige Ausgang im Rhythmus dieser Schwankungen ein- und ausgeschaltet werden.

I

I/O

Abk. für engl. "Input/Output", Eingabe/Ausgabe.

Impedanz

Scheinwiderstand, den ein Bauelement oder eine Schaltung aus mehreren Bauelementen für einen Wechselstrom einer bestimmten Frequenz besitzt.

impedanzarme Verbindung

Verbindung mit geringem Wechselstromwiderstand.

inaktive Metallteile

Nicht berührbare leitfähige Elemente, die von den aktiven Metallteilen durch eine Isolierung elektrisch getrennt sind, im Fehlerfall jedoch Spannung annehmen können.

induktive Kopplung

Eine induktive (magnetische) Kopplung tritt zwischen zwei stromdurchflossenen Leitern auf. Die durch die Ströme hervorgerufene magnetische Wirkung induziert eine Störspannung. Typische Störquellen sind z. B. Transformatoren, Motoren, parallel laufende Netzkabel und HF-Signalkabel.

IP-Protokoll

Abk. für Internet-Protokoll, Protokoll zum paketorientierten und verbindungslosen Transport von Datenpaketen von einem Sender über mehrere Netze hinweg zu einem Empfänger.

K

kapazitive Kopplung

Eine kapazitive (elektrische) Kopplung tritt zwischen Leitern auf, die sich auf unterschiedlichen Potenzialen befinden. Typische Störquellen sind z. B. parallel verlaufende Signalkabel, Schütze und statische Entladungen.

Kodierelement

Zweiteiliges Element zur eindeutigen Zuordnung von Elektronik- und Basismodul.

Konfigurieren

Systematisches Anordnen der I/O-Module einer Station.

kurzschlussfest

Eigenschaft von elektrischen Betriebsmitteln. Ein kurzschlussfestes Betriebsmittel hält den thermischen und dynamischen Belastungen, die an seinem Installationsort aufgrund eines Kurzschlusses auftreten können, stand.

L

LSB

Abkürzung für engl. "Least Significant Bit". Bit mit dem niedrigsten Stellenwert.

M

MAC-ID

Nach einem bestimmten Schlüssel vergebene, herstellerspezifische ID zur eindeutigen Identifikation eines Knotens im Netzwerk.

Masse

Gesamtheit aller untereinander verbundenen inaktiven Teile eines Betriebsmittels, die auch im Fehlerfall keine Berührungsspannung annehmen.

Masseband

Flexibler Leiter, meist geflochten, der die inaktiven Teile eines Betriebsmittels verbindet, z. B. die Tür eines Schaltschranks mit dem Schaltschrankkorpus.

Massung

Massung ist die Verbindung von elektrisch leitfähigen Teilen oder sogenannten Bezugsleitern mit Masse. Ziel ist ein möglichst geringer, frequenzunabhängiger Potentialunterschied.

Mode

engl., dt. Betriebsart (Modus).

MSB

Abkürzung für engl. "Most Significant Bit". Bit mit dem höchsten Stellenwert.

0

Overhead

Systemverwaltungszeit, die bei jedem Übertragungszyklus einmal im System benötigt wird.

Р

Parametrieren

 $Festlegen\ von\ Parametern\ der\ einzelnen\ Busteilnehmer\ bzw.\ ihrer\ Module\ in\ der\ Konfigurationssoftware\ des\ Controllers$

Ping

Implementierung eines Echo-Protokolls, benutzt, um die Erreichbarkeit von Zielstationen zu testen.

Potenzialausgleich

Die Angleichung der elektrischen Niveaus der Körper elektrischer Betriebsmittel und fremder, leitfähiger Körper durch eine elektrische Verbindung.

potenzialfrei

Galvanische Trennung der Bezugspotenziale von Steuer- und Laststromkreisen bei I/O-Modulen.

potenzialgebunden

Elektrische Verbindung der Bezugspotenziale von Steuer- und Laststromkreisen bei I/O-Modulen.

Reaktionszeit

In einem Bussystem das Zeitintervall zwischen dem Absenden eines Leseauftrags und dem Erhalt einer Antwort. Innerhalb eines Eingabemoduls das Zeitintervall von der Signaländerung am Eingang der Station bis zur Ausgabe derselben an das Bussystem.

Repeater

Verstärker für die über einen Bus übertragenen Signale.

RS 485

Serielle Schnittstelle nach EIA-Norm zur schnellen Datenübertragung durch mehrere Sender.

Schirm

Bezeichnung für die leitfähige Hülle von Leitungen, Gehäusen und Schränken.

Schirmung

Gesamtheit der Maßnahmen und Betriebsmittel, die zur Verbindung von Anlagenteilen mit dem Schirm dienen.

Schutzleiter

Ein für den Schutz gegen gefährliche Körperströme notwendiger Leiter, dargestellt durch das Kürzel PE (Abk. für engl. "Protective Earth").

seriell

Bezeichnung für eine Art der Informationsübertragung, bei der die Daten nacheinander – Bit für Bit – über eine Leitung übertragen werden.

SPS

Abk. für Speicherprogrammierbare Steuerung.

Station

Funktionseinheit oder Baugruppe, bestehend aus mehreren Elementen.

Topologie

Geometrischer Aufbau eines Netzes bzw. Anordnung der Schaltungen.

uDF

Abk. für engl. "User-Datagram-Protocol". UDP ist ein Transportprotokoll zum verbindungslosen Datenaustausch zwischen Ethernet-Teilnehmern.

Glossar

16 Index

A		N.	
Adressierung	3-7	Klassen	
Anschlussebene	3-8	-Assembly Objekt	7-9
Anschlussmöglichkeiten	3-7	-Connection Manager Objekt	7-21
Ausgänge, Fehlerfall	9-20	–Digital Versatile Modules	7-34
azyklische Dienste	11-7	-Ethernet Link Objekt	7-26
		-Ethernet/IP, Standard	7-6
В		-Identity Objekt	7-7
bestimmungsgemäßer Gebrauch	1-4	-Process Data	7-31
Betrieb, einwandfrei		-TCP/IP Interface Objekt	7-22
Betrieb, sicher	1-4	-VSC-Vendor Specific Classes	
Betriebsspannung	3-7	·	
Blitzschutz		L	
Blockschaltbild, Station		Lastspannung	3-7
BOOTP-Modus		LED-Anzeigen	
		Leitungsführung	
C		Leitungsschirm	
CODESYS	10-2	zertarigsseriiii	
-Ethernet-Adapter		М	
-Ethernet-Master		Massung	13-5
-Feature Sets		Maßzeichnungen	
-Globale Variablenliste		Modbus TCP	
-Kommunikationseinstellungen		-Register	0.4
-Kommunikationspfad		Module Application Instance	
-localhost		Module Application instance	11-0
		N	
-Modbus TCP-Master			0.1
-Netzwerkkonfiguration		Netzwerkkonfiguration	
-PLC_PRG		Nutzdaten	11-/
Crossover-Kabel	3-/	P	
n		<u>.</u>	11.5
D	244 44 7	Parameter	
DHCP-Modus		Parameter, Module	
Diagnose		PE-Anschluss	
Dokumentationskonzept	1-2	Potenzialausgleich	
_		Potenzialausgleichsleitung	
E		Potenzialverhältnisse	
Elektrische Installation		Produktfamilie	3-3
elektrostatische Entladung			
EMV	13-5	Q	
		QC	
F		QuickConnect	3-7
Fast Start-Up	3-7		
FSU	3-7	R	
		Rotary-Modus	3-10
G			
Gebrauch, bestimmungsgemäß	1-4	S	
GSD-Datei	3-7	Schirmung	13-6
		Software	8-2, 10-2
H		Spannungsversorgung	3-7
Hardware	8-2, 10-2	-7/8"	
	•	Symbole	
I		Symbolen	
Induktivitäten, Schutzbeschaltung	13-7	-	
IP-Adresse, PC		Т	
		Technische Daten	3-4

Index

Terminal Slot Class	7-30
Transport, sachgerecht	1-4
U Übertragungsmedien	13-3
w	
WIN 2000	14-2
WIN NT	14-2
MININD	112

Industrielle Automation

www.turck.com

1 0761050

Hans Turck GmbH & Co. KG 45472 Mülheim an der Ruhr Germany Witzlebenstraße 7 Tel. +49 (0) 208 4952-0 Fax +49 (0) 208 4952-264 E-Mail more@turck.com Internet www.turck.com