

Fibra óptica en plástico Fibra individual P12-C1

Tipo	P12-C1
N.º de ID	3051832
Datos ópticos	
Función	Sensor modo opuesto (emisor/receptor)
Tipo de fibra	Plástico
Datos mecánicos	
Diseño	Rectangular
Material de la cubierta	Plástico, PE, Negro
Material del revestimiento	Funda protectora:
Material del revestimiento	plástico, PE
Material de la punta de fibra óptica	Polietileno
Ciclos de flexión	2000
Radio de flexión	Ø 1 mm
Temperatura ambiente	-30+70 °C
Punta de temperatura máx.	70 °C

- Modo de funcionamiento: sensor de modo convergente
- Se incluyen 1 unidades en el volumen de suministro
- Revestimiento de polietileno, flexible
- Temperatura de servicio: -30...+70 °C
- Cable recto, confeccionable
- Casquillo final de la sonda: rectangular, convergente
- Longitud total del cable de fibra óptica: ± 1829 mm

Principio de funcionamiento

Si el espacio de montaje es limitado o en caso de temperaturas altas, las fibras ópticas de vidrio o plástico son en general una solución óptima. La fibra óptica transmite la luz desde el sensor hasta el objeto remoto. La fibra óptica individual es utilizada para modo opuesto de detección, mientras que la fibra óptica bifurcada está diseñada para modo de operación difuso o retro-reflectivo.