

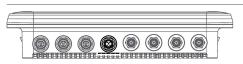
TN-UHF-Q300-AUS-LNX Lecteur UHF

Туре	TN-UHF-Q300-AUS-LNX		
N° d'identification	100000927		
Données électriques			
Tension de service	1830 VDC		
Courant de service nominal DC	≤ 3500 mA		
Norme PoE	IEEE 802.3at (PoE+)		
Transmission de données	champ alternatif électromagnétique		
Technologie	UHF RFID		
Région d'utilisation (UHF)	Australie (920 à 926 MHz)		
Normes radio et protocole	ISO 18000-63 EPCglobal Gen 2		
Distance canal	500 kHz		
Puissance de sortie	≤ 36 dBm (EIRP), réglable		
Polarisation d'antenne	circulaire/linéaire, réglable		
Largeur de valeur moyenne d'antenne	65°		
Fonction de sortie	lire/écrire		
Données mécaniques			
Condition de montage	non-blindé		
Température ambiante	-20+50 °C		
Format	Rectangulaire		
Dimensions	300 x 300 x 61.7 mm		
Matériau de boîtier	aluminium, AL, argent		
Matériau face active	Polyamide renforcé de fibres de verre, PA6-GF30, noir		
Résistance aux vibrations	55 Hz (1 mm)		
Résistance aux chocs	30 g (11 ms)		
Mode de protection	IP67		
Raccordement électrique	RP-TNC		
Impédance d'entrée	50 Ohm		

Caractéristiques

- ■TCP/IP
- Tête de lecture/écriture basée sur Ethernet à programmation libre, basée sur Linux
- Langages de programmation C, C++, Node-JS, Python
- ■Composants du logiciel : SSH, SFTP, HTTP, IBTP, MTXP, DHCP, SNTP, Node.js 6.9.5 (LTS), Python 3.x
- Mise en œuvre du protocole nécessaire
- ■4 raccords RP-TNC pour antennes UHF externes passives
- ■4 canaux numériques configurables comme entrées PNP et/ou sorties 0,5 A
- Vitesse de transmission 10 Mb/s / 100 Mb/s
- Serveur Web intégré
- Affichages LED et diagnostics
- L'appareil est uniquement conçu pour un fonctionnement en Australie/Nouvelle-Zélande (AUS/NZL) 920...926 MHz

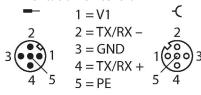
Principe de fonctionnement

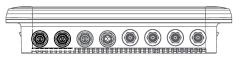

Les lecteurs UHF forment une zone de transmission, dont les dimensions varient en fonction de la combinaison du lecteur et de l'étiquette électronique.

En fonction des tolérances des composants, du montage dans l'application, des conditions d'environnement et de l'influence des matériaux (en particulier le métal), les distances possibles peuvent varier. Voilà pourquoi il est indispensable d'effectuer un test de l'application (surtout pour la lecture et l'écriture en mouvement) dans des conditions réelles.

Données techniques

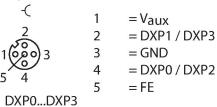
MTTF	49 Années suivant SN 29500 (Ed. 99) 20
	00

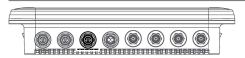

	· ·		
Description du système			
Processeur	ARM Cortex A8, 32 Bit, 800 MHz		
Mémoire	512 MB Flash		
Mémoire RAM	512 MB DDR3		
Données de système			
Vitesse de transmission Ethernet	10/100 Mbit/s		
Connectique Ethernet	1 × M12, 4 pôles, codage D		
Entrées digitales			
Nombre de canaux	4		
Technique de raccordement, entrée	M12, 5 pôles		
Type d'entrée	PNP		
Seuil de commutation	EN 61131-2 type 3, PNP		
Tension de signal - niveau bas	< 5 V		
Tension de signal - niveau élevé	> 11 V		
Courant de signal - niveau bas	< 1,5 mA		
Courant de signal - niveau élevé	> 2 mA		
Type de diagnostic d'entrée	Diagnostic de canal		
Sorties digitales			
Nombre de canaux	4		
Technique de raccordement, sortie	M12, 5 pôles		
Type de sortie	PNP		
Type de diagnostic de sortie	Diagnostic de canal		
Données de système			
Quantité dans l'emballage	1		


conseil

Câble d'alimentation : UX18415 RKC 4.4T-0.5-RSM 40/S3520 UX18416 RKC 4.4T-2-RSM 40/S3520 UX14184 RKC 4.4T-3-RSM 40/S3520 UX14185 RKC 4.4T-5-RSM 40/S3520

Alimentation en tension M12 × 1

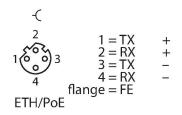



conseil

Câble d'actionneur et de détecteur/câble de raccordement PUR (exemple) : RKC4.4T-2-RSC4.4T/TXL N° d'identification 6625608

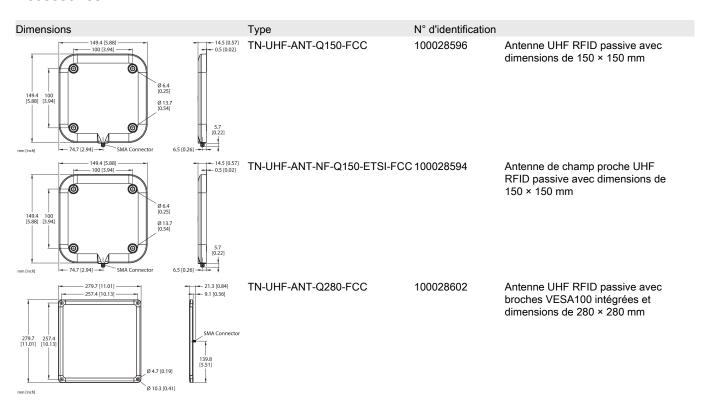
Répartiteur Y pour DXP VBS2-FSM4.4-2FKM4 N° d'identification 6930560

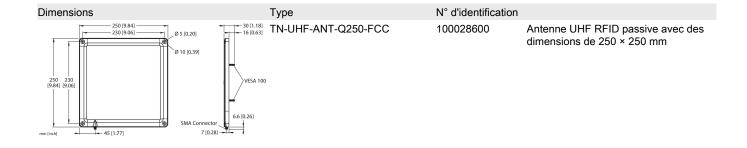
Emplacement E/S M12 × 1



conseil

câble Ethernet (exemple): RSSD-RJ45S-4416-5M N° d'identité 6441633





Accessoires

Dimensions	Туре	N° d'identification	
	TN-UHF-CBL-HF240-RPTNC-1- SMA	100028191	Câble coaxial HF240 de 1 m de long
	TN-UHF-CBL-HF240-RPTNC-2- SMA	100028192	Câble coaxial HF240 de 2 m de long
	TN-UHF-CBL-HF240-RPTNC-4- SMA	100028193	Câble coaxial HF240 de 4 m de long
	TN-UHF-CBL-HF240-RPTNC-6- SMA	100028194	Câble coaxial HF240 de 6 m de long
	TN-UHF-CBL-HF240-RPTNC-8- SMA	100028195	Câble coaxial HF240 de 8 m de long
	TN-UHF-CBL-HF240-RPTNC-10- SMA	100028196	Câble coaxial HF240 de 10 m de long
	TN-UHF-CBL-HF240-RPTNC-12- SMA	100028197	Câble coaxial HF240 de 12 m de long

Accessoires

