

Fibre optique en plastique fibre en mode diffus PBCT23TMB5MTA

Туре	PBCT23TMB5MTA	
N° d'identification	3019717	
Données optiques		
Fonction	détecteur en mode diffus	
Type fibre optique	Plastique	
Données mécaniques		
Format	rond	
Matériau de boîtier	Plastique, PE, noir	
Matériau de la gaine	STEELSKIN	
Matériau de la gaine	métal, 1.4310 (AISI 301)	
Diamètre faisceau	0.5 mm	
Matériel de l'embout de fibre	acier inoxydable	
Cycles de courbure	1000	
Rayon de courbure	Ø 12 mm	
Température ambiante	-30+70 °C	
Température max. embout d'extrémité	70 °C	

- mode de fonctionnement: système diffus / rétro-réflectif
- gaine en polyéthylène, flexible
- température de fonctionnement: -30...+70 °C
- gaine SteelSkin, terminée
- bague d'extrémité de sonde; coaxiale, filetage, angle 90°
- diamètre du noyau fibre optique: 0.5 mm
- longueur totale de la fibre optique: ± 914 mm

Principe de fonctionnement

Les fibres optiques en verre ou en plastique sont souvent la solution optimale en cas d'encombrements restreints ou de températures élevées. Les fibres optiques transportent la lumière du détecteur vers un objet éloigné. Les fibres optiques individuelles peuvent être combinées avec des systèmes barrière, les fibres optiques bifurquées avec des détecteurs en mode rétro-réflectif ou diffus.