

SM30RW3R W/30

détecteur en mode barrière (récepteur)

Données techniques	
Туре	SM30RW3R W/30
N° d'identification	3034169
Données optiques	
Fonction	Barrière unidirectionnelle
Mode de fonctionnement	récepteur
Longueur d'onde	880 nm
Portée	060000 mm
Tension de service	20250 VAC
Retard à la disponibilité	≤ 100 ms
Temps de réponse typique	< 16 ms
Format	Tube
Dimensions	Ø 30 mm
Matériau de boîtier	Plastique, Plastique thermoplastique
Lentille	Acrylique
Raccordement électrique	Câble, 9 m, PVC
Nombre de conducteurs	3
Température ambiante	-40+70 °C
Mode de protection	IP67
Caractéristiques particulières	encapsulé
Indication réserve de gain	LED
Essais/Certificats	

Caractéristiques

Principe de fonctionnement

Les détecteurs en mode barrière sont constitués d'un émetteur et d'un récepteur. Ils sont montés de telle façon que la lumière de l'émetteur arrive exactement au récepteur. Si un objet interrompt ou affaiblit le rayon lumineux, une commutation sera réalisée. Partout où des objets opaques doivent être détectés, des systèmes barrière sont les détecteurs photoélectriques les plus fiables. Le grand contraste entre l'état clair et sombre, ainsi que les réserves de gain élevées typiques pour ce mode de fonctionnement, permettent un fonctionnement avec de grandes distances et sous des conditions ambiantes difficiles. Courbe de réserve de gain Réserve de gain dépend de la portée